Стивен Хокинг - Теория всего[Происхождение и судьба Вселенной]
- Название:Теория всего[Происхождение и судьба Вселенной]
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Хокинг - Теория всего[Происхождение и судьба Вселенной] краткое содержание
Эта книга объединила семь лекций всемирно знаменитого ученого, посвященных происхождению Вселенной и представлениям о ней - от Большого Взрыва до черных дыр и теории струн. А главное, тому, как создать на основе частных физических теорий великую объединенную теорию всего.
Теория всего[Происхождение и судьба Вселенной] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Квантовая гравитация
Для предсказания того, как должна была зародиться Вселенная, нужно установить законы природы, которые действовали в начале времени. Если справедлива классическая общая теория относительности, то из теоремы сингулярности следует, что начало времени должно было представлять собой точку, где плотность материи и кривизна пространства были бесконечны. Все известные нам законы природы там должны нарушаться. Можно предположить, что там действовали особые законы, не нарушаемые в сингулярностях, но было бы крайне трудно даже сформулировать физические законы для таких своенравных точек, и наблюдения не подсказали бы нам, какими могут быть эти законы. Однако теоремы о сингулярности показывают, что при столь значительном усилении гравитационного поля особую важность приобретают эффекты квантовой гравитации. Классическая теория больше не может служить хорошим описанием Вселенной. Поэтому, обсуждая самые ранние этапы развития Вселенной, надо использовать квантовую теорию гравитации. Как мы покажем далее, квантовая механика допускает повсеместное соблюдение обычных физических законов — включая начало времени. Нет нужды постулировать новые законы для сингулярностей, потому что квантовая теория не нуждается в сингулярностях.
Мы пока не имеем полной и последовательной теории, объединяющей квантовую механику и гравитацию. Но мы совершенно уверены в некоторых особенностях, которыми должна обладать объединенная теория. Прежде всего, должно быть учтено предложение Фейнмана о формулировании квантовой теории на основе сумм по траекториям (историям частиц). При таком подходе частица, перемещающаяся из точки А в точку В, имеет не одну историю, как в классической теории. Вместо этого
предполагается, что она следует каждым из возможных путей в пространстве-времени. Каждой такой истории соответствует пара чисел, одно из которых характеризует размеры волны, а второе — ее положение в цикле, то есть фазу.
Вероятность того, что частица, скажем, минует некоторые особые точки, определяется путем сложения волн, связанных с каждой возможной историей, которая проходит через эту точку. Однако практические попытки выполнить это сложение обычно наталкиваются на серьезные технические трудности. Единственный способ обойти их — последовать такому своеобразному предписанию: нужно складывать волны для историй частиц, которые происходят не в реальном времени, привычном для нас, а в мнимом.
Выражение «мнимое время» словно бы взято из научной фантастики, но на самом деле это точно определенное математическое понятие. Чтобы избежать технических трудностей при фейнмановском суммировании по историям, следует использовать мнимое время. Это оказывает интересное влияние на пространство-время: различие между пространством и временем совершенно стирается. Пространство-время, в котором событиям соответствуют мнимые значения временных координат, признается евклидовым, потому что метрика определенно-положительна.
В евклидовом пространстве-времени нет разницы между направлением времени и направлениями в пространстве. С другой стороны, в реальном пространстве-времени, где события характеризуются реальными значениями временных координат, разницу установить легко. Направление времени лежит внутри светового конуса, а пространственные направления — вне его. Можно посчитать, что использование мнимого времени просто-напросто математический прием, уловка, помогающая вычислить результаты для реального пространства-времени. Однако может статься, что этим дело
не ограничивается. Возможно, что евклидово пространство-время — фундаментальное понятие, а наши представления о реальном пространстве-времени не более чем плод воображения.
Когда мы применяем для Вселенной фейнмановский метод суммирования по историям, аналогом истории частицы выступает уже все искривленное пространство-время, которое представляет историю всей Вселенной. По техническим причинам, о которых говорилось выше, это искривленное пространство-время должно восприниматься как евклидово. Иначе говоря, время является мнимым и неотличимо от направлений в пространстве. Для того чтобы вычислить вероятность обнаружения реального пространства-времени с заданными характеристиками, нужно сложить волны, связанные с теми траекториями в мнимом времени, которые обладают требуемыми характеристиками. Проделав вычисления, можно получить вероятностную историю Вселенной в реальном времени.
Отсутствие граничных условий
В классической теории тяготения, в основе которой лежит реальное пространство-время, имеется лишь два возможных варианта поведения Вселенной. Она или существовала вечно, или берет начало в сингулярности в некоторый конечный момент прошлого. Теоремы о сингулярности показывают, что должен был иметь место второй вариант. С другой стороны, квантовая теория гравитации предлагает третью возможность. Поскольку мы имеем дело с евклидовым пространством-временем, в котором направление времени уравнено с направлениями в пространстве, пространство-время может быть конечным по протяженности, но при этом
не иметь сингулярностей, которые формируют границу или край. Пространство-время в этом случае будет подобно поверхности Земли, только с двумя дополнительными измерениями. Поверхность Земли конечна по протяженности, но не имеет границы или края. Отплыв на запад, вы не упадете с края света и не натолкнетесь на сингулярность. Уж я-то знаю, потому что огибал земной шар.
В евклидовом пространстве-времени, двигаясь назад к бесконечному мнимому времени или чему-то другому, начинающемуся в сингулярности, мы, как и в классической теории, столкнемся с проблемой определения начального состояния Вселенной. Бог может знать, как началась Вселенная, но мы не в состоянии привести каких-либо особых доводов в пользу того, что она зарождалась так, а не иначе. С другой стороны, квантовая теория гравитации открыла новую возможность: пространство-время вообще не имеет границ. Так что нет нужды устанавливать их поведение. Нет ни сингулярностей, в которых нарушаются законы физики, ни края пространства-времени, который заставил бы нас апеллировать к Богу или выводить новый закон граничных условий пространства-времени. Скажем так: граничные условия для Вселенной состоят в отсутствии у нее границ. Вселенная должна быть абсолютно замкнутой и независимой от чего-либо лежащего вне ее. Ее нельзя ни создать, ни уничтожить. Она должна просто существовать.
Именно на конференции в Ватикане я впервые выдвинул предположение, что, возможно, время и пространство вместе образуют поверхность конечных размеров, не имеющую границы или края. Мой доклад был, однако, скорее математическим, поэтому напрашивающиеся из него выводы о роли Бога в сотворении Вселенной ускользнули тогда от внимания слушателей (и моего тоже). Во время ватиканской конференции я не знал, как использовать идею отсутствия
Читать дальшеИнтервал:
Закладка: