Кудрявцев Степанович - Курс истории физики
- Название:Курс истории физики
- Автор:
- Жанр:
- Издательство:Просвещение
- Год:1982
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Кудрявцев Степанович - Курс истории физики краткое содержание
Курс истории физики предназначен для студентов педагогических институтов. В нём изложена история мировой физики от древности до наших дней. Книга состоит из трёх частей. В первой освещена история становления физической науки, заканчивающейся Ньютоном. Последняя, третья часть посвящена истории становления квантовой, релятивисткой и ядерной физики.
Курс истории физики - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В статье 1877 г. «О связи второго начала механической теории теплоты с исчислением вероятностей» Больцман подробно развивает свой статистический метод. Он указывает в самом начале статьи, что связь между вторым началом термодинамики и исчислением вероятностей «обнаруживается прежде всего в том, что, как мною было показано, аналитическое доказательство второго начала невозможно никакими другими способами, кроме тех, которые заимствуются из теории вероятностей». Чрезвычайно интересно с исторической точки зрения введение Больцманом в этой работе гипотезы, что молекула газа может терять и приобретать только дискретные порции энергии, кратные некоторой наименьшей порции энергии ε. «Перед столкновением, — пишет Больцман, — каждая из обеих сталкивающихся молекул имеет живую силу 0, или ε, или 2ε и т. д. ... или pε и вследствие какой-то причины будет происходить то, что и после соударения никогда ни одна из сталкивающихся молекул не принимает живой силы, не содержащейся в этом ряде». Так Больцман начинает свои статистические рассуждения, оговариваясь, однако, что это фикция, которой не соответствует ничего реального, но которая облегчает математическую трактовку проблемы. В дальнейших вычислениях Больцман освобождается от гипотезы, полагая в пределе эпсилон ε=0.
Больцман ставит задачу найти закон распределения, который позволяет знать, как много из общего числа молекул n обладает энергией 0, ε, 2ε,.... Он подсчитывает, сколько комбинаций соответствует такому распределению состояний, полагая, что число этих комбинаций определяет вероятность данного состояния.
Если бы Больцман считал молекулы газа неразличимыми, как это делал в квантовой теории идеального газа Эйнштейн, и сохранил предположение о конечной порции энергии, то он получил бы формулу статистики Бозе—Эйнштейна. Но Больцман этого не сделал. Он считал неразличимыми между собой молекулы, находящиеся в одном и том же энергетическом состоянии. Однако когда молекула одной энергетической группы меняется местами с молекулой другой энергетической группы, то, хотя распределение молекул не меняется, тем не менее возникает новая комплексия. Число комплексий, которым может быть осуществлено данное состояние, и определяет, по Болыдману, вероятность этого состояния. Таким образом, она, по Больцману, определяется числом:
где n - общее число молекул, w0 - число молекул, обладающих энергией, равной нулю (Больцман считает энергию между 0 и ε, отступая от первоначальной квантовой гипотезы), w1, — число молекул, обладающих энергией ε (между ε и 2ε), и т. д. При этом
и общая энергия
и общая энергия
Логарифмируя выражение для вероятности и определяя максимум этой логарифмической функции при условии постоянства n и L, Больцман находит распределение Максвелла — Больцмана, которое оказывается, таким образом, наиболее вероятным распределением. Подсчитывая наиболее вероятное распределение скоростей, Больцман вводит величину Θ, равную среднему логарифму функции распределения, взятой со знаком минус. Максимальное значение этой величины, которую Больцман называет «мерой распределения», при условии постоянства числа молекул и их общей кинетической энергии определяет наиболее вероятное распределение.
Величину, которую Больцман обозначал через Е и Θ, в дальнейшем стали обозначать Н, и она оказалась пропорциональной энтропии. Закон возрастания энтропии у Больцмана получает простую интерпретацию: «Система стремится к наиболее вероятному состоянию». Второе начало потеряло характер абсолютного закона природы и стало статистическим законом. В природе возможны процессы, происходящие в направлении убывания энтропии, и это, по мнению Больцмана, избавляет Вселенную от тепловой смерти. Для космоса в целом тепловой смерти нет. Взгляды и выводы Больцмана подвергались ожесточенной критике. Но вместе с тем они воспринимались и развивались другими исследователями: Максвеллом, Лоренцем, Планком. Планк дал простой вывод и простое точное выражение соотношения между энтропией и вероятностью. В обозначениях Планка оно имеет вид:
S = k lnW,
где S - энтропия, W - вероятность, k -постоянная, равная R/N, которую Планк назвал в честь Больцмана постоянной Больцмана. Из соотношения Планка исчезла неопределенная аддитивная константа, фигурирующая у Больцмана, и это соответствует тепловой теореме Нернста. формула соотношения между энтропией и вероятностью, данная Планком, фигурирует сегодня во всех руководства и монографиях как соотношение Больцмана.
В 1912 г., читая лекции по статистическим теориям термодинамики в Париже, Лоренц говорил об успехах кинетической теории газов. Он указывал, как бы подводя итоги многолетней борьбы сторонников феноменологического описания с приверженцами атомистики: «Теперь нельзя сомневаться в их существовании после того, как «реальность молекул» стала фактом, почти что «наблюдаемым» непосредственно; молекулы существуют для нас совершенно так Же, как и многие другие предметы, непосредственно нами не видимые, но в существовании которых наш ум вовсе не сомневается». Далее Лоренц продолжал: «Основываясь на этих блестящих результатах, можно поставить вопрос: нельзя ли найти закон Карно — Клаузиуса при помощи молекулярных теорий, понимая, конечно, последние в очень широком смысле, так как общности результата должна каким-либо образом соответствовать общность предпосылок? Австрийскому физику Больцману принадлежит честь первого успешного подхода к этой задаче и установление связи между понятием вероятности, определенным образом понимаемой, и термодинамическими функциями, в частности энтропией. Рядом с ним нужно считать одним из основателей этой новой ветви теоретической физики — статистической термодинамики — Уилларда Гиббса. Далее следует упомянуть работы Пуанкаре, Планка и Эйнштейна. Общий результат, который можно считать окончательно установленным, это существование связи между энтропией некоторого состояния и вероятностью этого состояния». К именам, упомянутым Лоренцем, следует добавить имена П.Эренфеста и Т. А. Афанасьевой-Эренфест, которым принадлежит ряд работ по статистической термодинамике, и в частности фундаментальная обзорная статья о принципиальных основах статистического понимания, опубликованная в «Математической энциклопедии» в 1911 г.
Читать дальшеИнтервал:
Закладка: