Лев Ландау - Физика для всех. Молекулы
- Название:Физика для всех. Молекулы
- Автор:
- Жанр:
- Издательство:Наука
- Год:1984
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лев Ландау - Физика для всех. Молекулы краткое содержание
Во второй из четырех книг 'Физики для всех' рассказано о строении вещества, о физических явлениях и процессах, которые происходят в реальных кристаллах и определяют их свойства. Читатель знакомится с различными фазовыми состояниями вещества, со структурой и свойствами жидких и твердых растворов, структурой кристаллов и молекул, с основными законами термодинамики.
Физика для всех. Молекулы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Нетрудно понять, что механическая энергия тела как целого есть только часть полной энергии. Ведь когда тело покоится, молекулы его не останавливаются и не перестают взаимодействовать одна с другой. Энергия теплового движения частиц, которая остается у покоящегося тела, и энергия взаимодействия частиц составляют внутреннюю энергию тела. Поэтому полная энергия тела равняется сумме механической и внутренней.
В механическую энергию тела как целого входит также энергия тяготения, т. е. потенциальная энергия взаимодействия частиц тела с земным шаром.
Рассматривая внутреннюю энергию, мы уже не обнаружим пропажи энергии. Когда мы рассматриваем природу через стекла, увеличивающие мир в миллионы раз, картина представляется нам на редкость гармоничной. Нет никаких потерь механической энергии, а есть лишь превращение ее во внутреннюю энергию тела или среды. Пропала работа? Нет! Энергия ушла на убыстрение относительного движения молекул или изменение их взаимного расположения.
Молекулы послушны закону сохранения механической энергии. В мире молекул нет сил трения; мир молекул управляется переходами потенциальной энергии в кинетическую и обратно. Лишь в грубом мире больших вещей, не замечающем молекул, "энергия пропадает".
Если в каком-либо явлении механическая энергия пропадает вся или частично, то на такую же величину возрастает внутренняя энергия тел и среды, участвующих в этом явлении. Иначе говоря, механическая энергия переходит без каких бы то ни было потерь в энергию молекул или атомов.
Закон сохранения энергии - это строжайший бухгалтер физики. В любом явлении приход и расход должны точно сойтись. Если этого не произошло в каком-либо опыте, то, значит, что-то важное ускользнуло от нашего внимания. Закон сохранения энергии в таком случае сигнализирует: исследователь, повторить опыт, увеличить точность измерений, искать причину потерь! На таком пути физики неоднократно делали новые важные открытия и еще раз убеждались в строжайшей справедливости этого замечательного закона.
Калория
У нас уже есть две единицы энергии - джоуль и килограмм-сила-метр. Казалось бы, достаточно. Однако при изучении тепловых явлений по традиции пользуются еще и третьей единицей - калорией.
Позже мы увидим, что и калория не исчерпывает список принятых для обозначения энергии единиц.
Возможно, в каждом отдельном случае употребление "своей" единицы энергии удобно и целесообразно. Но в любом мало-мальски сложном примере, связанном с переходом энергии из одного вида в другой, возникает невообразимая путаница с единицами.
Новая система единиц (СИ) предусматривает одну единицу для работы, энергии и количества, тепла - джоуль. Однако, учитывая силу традиций и тот срок, который понадобится, чтобы система стала общеупотребительной и единственной системой единиц, полезно познакомиться поближе с "уходящей" единицей количества теплоты - калорией.
Малая калория (кал) - это количество энергии, которое надо сообщить 1 г воды, чтобы нагреть его на 1 градус.
Слово "малая" надо упомянуть потому, что иногда используют "большую" калорию, которая в тысячу раз больше выбранной единицы (большая калория обозначается ккал, что значит "килокалория").
Соотношение между калорией и механическими единицами работы находят, нагревая воду механическим путем. Подобные опыты ставились неоднократно. Можно, например, повысить температуру воды энергичным перемешиванием. Затраченная для нагрева воды механическая работа оценивается достаточно точно. Из каких измерений было найдено:
1 кал = 0,427 кгс*м = 4,18 Дж.
Поскольку единицы энергии и работы общие, то в калориях можно измерять и работу. На подъем килограммовой гири на метровую высоту надо затратить 2,35 калории. Звучит это необычно, да и сопоставлять подъем груза с нагреванием воды неудобно. Поэтому в механике и не пользуются калориями.
Немного истории
Закон сохранения энергии мог быть сформулирован лишь тогда, когда достаточно отчетливыми стали представления о механической природе теплоты и когда техника поставила практически важный вопрос об эквиваленте между теплом и работой.
Первый опыт для установления количественного соотношения между теплом и работой был проделан известным физиком Румфордом (1753-1814). Он работал на заводе, где изготовляли пушки. Когда сверлят дуло орудия, выделяется тепло. Как оценить его? Что принять за меру тепла? Румфорду пришло в голову работу, производимую при сверлении, поставить в связь с нагреванием того или иного количества воды на то или иное число градусов. В этом исследовании, пожалуй, впервые четко выражена мысль, что тепло и работа должны иметь общую меру.
Следующим шагом к открытию закона сохранения энергии было установление важного факта: исчезновение работы сопровождается появлением пропорционального количества теплоты, этим и была найдена общая мера теплоты и работы.
Первоначальное определение так называемому механическому эквиваленту теплоты дал французский физик Сади Карно. Этот выдающийся человек скончался в возрасте 36 лет в 1832 г. и оставил после себя рукопись, которая была опубликована лишь через 50 лет. Сделанное Карно открытие осталось неизвестным и не повлияло на развитие науки. В этой работе Карно вычислил, что подъем 1 м 3воды на высоту 1 м 3требует такой же энергии, какая нужна для нагревания 1 кг воды на 2,7 градуса (правильная цифра 2,3 градуса).
В 1842 г. публикует свою первую работу гейльброннский врач д-р Юлиус Роберт Майер. Хотя Майер называет знакомые нам физические понятия совсем по-другому, все же внимательное чтение его работы приводит к выводу, что в ней изложены существенные черты закона сохранения энергии. Майер различает внутреннюю энергию ("тепловую"), потенциальную энергию тяготения и энергию движения тела. Он пытается из чисто умозрительных заключений вывести обязательность сохранения энергии при различных превращениях. Для того чтобы проверить это утверждение на опыте, надо иметь общую меру для измерения этих энергий. Майер вычисляет, что нагревание 1 кг воды на 1 градус равноценно поднятию 1 кг на 365 м.
Во второй своей работе, опубликованной три года спустя, Майер отмечает универсальность закона сохранения энергии - возможность применения его к вопросам химии, биологии и космическим явлениям. К различным формам энергии Майер добавляет магнитную, электрическую и химическую.
Большая заслуга в открытии закона сохранения энергии принадлежит замечательному английскому физику (пивовару из Сальфорда в Англии) Джемсу Прескотту Джоулю, работавшему независимо от Майера.
Если для Майера характерна некоторая склонность к неопределенной философии, то основной чертой Джоуля является строгий экспериментальный подход к рассматриваемым явлениям. Джоуль задает природе вопрос и получает на него ответ путем исключительно тщательно поставленных специальных опытов. Нет сомнения, что во всей серии опытов, которые ставил Джоуль, он руководился одной идеей - найти общую меру оценки тепловых, химических, электрических и механических действий, показать, что во всех этих явлениях сохраняется энергия. Джоуль сформулировал свою мысль так: "В природе не происходит уничтожения силы, производящей работу, без соответствующего действия".
Читать дальшеИнтервал:
Закладка: