Пол Хэлперн - Коллайдер
- Название:Коллайдер
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2010
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пол Хэлперн - Коллайдер краткое содержание
Осенью 2008 года газеты запестрели заголовками, сообщавшими» будто в недрах Большого адронного коллайдера (БАК), на котором физики собирались расщепить вещество на элементарные частицы, родятся микроскопические черные дыры, способные поглотить Землю.
Какое значение имеет БАК для науки? Что ученые ищут? Почему физика, возможно, вскоре совершит один из величайших рывков в своей истории? Все эти вопросы обсуждаются в книге «Коллайдер». Автор, кроме всего прочего, доказывает, почему невозможно ни практически, ни теоретически, что на БАК появятся черные мини-дыры, которых все так боятся.
Коллайдер - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Фотон - переносчик электромагнитных сил, действующих на сколь угодно большом расстоянии, - имеет нулевую массу. Кроме того, раз он не меняет заряда взаимодействующих частиц, фотон электрически нейтрален. Что касается слабого взаимодействия, двое из его переносчиков, W +и W -бозоны [10], имеют заряд и массу - отражение того факта, что слабые силы могут менять заряд и являются короткодействующими. Есть еще третий переносчик, Z-бозон, но он нейтральный. Его существование было предсказано в 1960 г. теоретиком из Гарварда Шелдоном Глэшоу. Впоследствии все три переносчика слабого взаимодействия были обнаружены экспериментально.
Итак, когда к набору известных переносчиков и полей, отвечающих разным типам материи, добавился механизм Хиггса, дело оставалось за «малым» - собрать все кусочки мозаики вместе и свести воедино электромагнетизм и слабое взаимодействие. В 1967 г. американский физик Стивен Вайнберг, работавший тогда в Массачусетском технологическом институте, и пакистанский ученый Абдус Салам из Кембриджа независимо пришли к разумной теории электрослабого объединения. Эта великолепная теория венчает собой десятилетия экспериментальных и теоретических исследований в физике субатомных частиц. Современное ее название Стандартная модель - дань уважения ее величию.
Согласно теоретическим предсказаниям, от того первичного «хиггса» должны были остаться следы, которые можно зарегистрировать. Но почему-то эксперименты, уже несколько десятилетий ведущиеся на подходящих энергиях, пока молчат. Физическое сообщество надеется, что столь долгожданный бозон Хиггса покажется на БАК и последний вопрос к Стандартной модели будет снят с повестки дня.
Ученые, имеющие отношение к БАК, полностью сознают, что Стандартная модель вряд ли все объяснит. С дисбалансом во Вселенной связано слишком много загадок, чтобы считать Стандартную модель истиной в последней инстанции. Поле Хиггса пока не обнаружено, для остальных взаимодействий единая теория еще не построена - неудивительно, что немало физиков сегодня воздерживаются от однозначных утверждений о справедливости Стандартной модели. Хотя эта теория успешно объясняет большинство явлений в мире элементарных частиц, она, как и многие великолепные старинные фрески, не избежала трещин.
В преддверии начала полномасштабных экспериментов на БАК исследователи наряду со Стандартной моделью рассматривают и некоторые ее альтернативы, надеясь, что опыт скажет здесь решающее слово. Скажем, физики-экспериментаторы не удивятся, если бозон Хиггса окажется тяжелее, чем предсказывает Стандартная модель, или если вместо одного бозона на БАК появится целых три его разновидности, как утверждается в определенных теориях. В этом плане экспериментаторы берут пример с хороших акушеров, готовых к любому развитию надвигающихся родов.
Из моделей объединения, взошедших на научную арену в последние десятилетия, наибольшую популярность получила теория струн. В ней роль элементарных кирпичиков природы играют безумно крошечные (порядка планковской длины, 10 -33см) вибрирующие энергетические нити, а не точечные частицы Стандартной модели. У струн, таким образом, не нулевая протяженность, а конечный, хоть и ненаблюдаемый размер. Это большое математическое преимущество, поскольку все выражения, куда входит обратная длина, из бесконечных становятся конечными. В результате исчезают математические проблемы, которые в стандартной квантовой теории поля встречаются на каждом шагу - отдельные члены в уравнениях стремятся к бесконечности, что затуманивает их физический смысл.
Теорию струн иногда называют Теорией всего сущего (ТВС), поскольку она обещает описать все известные взаимодействия. Возможность избавиться от бесконечностей дает надежду, что эта модель поможет справиться с гравитацией, которую пока никому, включая вдумчивого Эйнштейна, не удалось включить в единую схему. Но есть и те, кто критикует струнную теорию за ее всеядность. Дело в том, что Стандартная модель - это всего лишь один из частных случаев теории струн, но есть и несметное количество других возможностей, подчас далеко не самых реалистичных с физической точки зрения. Поэтому одна из центральных проблем теории струн - выделить единственную ТВС, которая описывает именно нашу Вселенную.
В струнной теории различные поля и частицы - это всего лишь разные режимы, или моды, энергетических колебаний. Чтобы настроить гитару, подтягивают ее струны. Так же и колебания в теории струн меняются с изменением натяжения. Они создают определенный гармонический рисунок вроде того, что мы слышим в музыкальных произведениях. Разные состояния струны обеспечивают различные массы, спины и другие свойства всевозможных кирпичиков природы.
Первоначально теория струн зародилась как модель только сильного взаимодействия. В этой своей версии она относилась только к переносчикам сил, то есть к бозонам. Бозонную теорию струн нечего было даже и думать применять к материи. Последняя, как мы знаем, построена из фермионов. Поэтому теоретикам пришлось поломать голову, чтобы распространить теорию струн помимо переносчиков взаимодействий и на частицы материи. А для этого в струны как-то нужно было включить фермионы.
Чтобы наряду с бозонными струнами описать фермионные, физик Пьер Рамон из Университета Флориды в 1971 г. предложил концепцию суперсимметрии. Идея Рамона о преобразовании, связывающем силы и материю, молниеносно распространилась в физическом сообществе и увлекла теоретиков всех мастей, даже тех, кто относился к струнам скептически. Симметрия, объединявшая бозоны с фермионами, словно знаменовала собой конец неравенству в мире частиц.
Более того, в отличие от традиционных квантовых теорий поля вроде Стандартной модели, суперсимметрия, кажется, готова была взять под свое крыло и гравитацию. Никогда еще за свою историю квантовая физика не стояла так близко к тому, чтобы включить гравитацию в единую теорию поля. Нежданно-негаданно неисполненная мечта Эйнштейна об окончательной теории получила новую жизнь, будто раритетному автомобилю поставили новенький рычащий мотор.
На волне всеобщей эйфории, вызванной суперсимметрией (коротко - просто SUSY [11]), вдохновленные теоретики оказались на некотором перепутье. Во-первых, можно было вплотную заняться суперструнами - суперсимметричной теорией струн - и исследовать их фундаментальные свойства, надеясь, что они совпадут с наблюдаемым поведением элементарных частиц. В 1984 г. Грин и Шварц получили важный результат об отсутствии в теории суперструн «аномалий», то есть математических неувязок. Ликованию не было предела. Суперструны, казалось, вырвались вперед на гоночном треке.
Читать дальшеИнтервал:
Закладка: