Александр Китайгородский - Физика для всех. Движение. Теплота

Тут можно читать онлайн Александр Китайгородский - Физика для всех. Движение. Теплота - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Наука, год 1974. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Китайгородский - Физика для всех. Движение. Теплота краткое содержание

Физика для всех. Движение. Теплота - описание и краткое содержание, автор Александр Китайгородский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.

Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.

Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Физика для всех. Движение. Теплота - читать онлайн бесплатно полную версию (весь текст целиком)

Физика для всех. Движение. Теплота - читать книгу онлайн бесплатно, автор Александр Китайгородский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Значит, земной слой, находящийся над телом, все равно что отсутствует. Действие отдельных его частей на тело уравновешивается, и суммарная сила притяжения со стороны внешнего слоя равняется нулю.

Конечно, во всех этих рассуждениях мы считали плотность Земли постоянной внутри каждого слоя.

Результат наших рассуждений позволяет легко получить формулу для силы тяжести, действующей на любой глубине H под землей. Точка, расположенная на глубине H , испытывает лишь притяжение со стороны внутренних слоев Земли. Формула для ускорения силы тяжести g = γ( M / R ) применима и для этого случая, но M и R – это масса и радиус не всей Земли, а ее «внутренней» по отношению к этой точке части.

Если бы Земля имела одинаковую плотность во всех слоях, то формула для g приняла бы вид:

где ρ плотность R З радиус Земли Это значит что g менялось бы прямо - фото 161

где ρ – плотность, R З– радиус Земли.

Это значит, что g менялось бы прямо пропорционально ( R З– H ): чем больше глубина H , тем меньше было бы g .

На самом же деле поведение g вблизи земной поверхности – мы можем проследить за ним вплоть до глубин 5 км (ниже уровня моря) – совсем не подчиняется этому закону. Опыт показывает, что в этих слоях g , наоборот, растет с глубиной. Расхождение опыта с формулой объясняется тем, что не было учтено различие плотности на разных глубинах.

Средняя плотность Земли легко находится делением массы на объем земного шара. Это приводит нас к цифре 5,52. В то же время плотность поверхностных пород много меньше – она равна 2,75. Плотность земных слоев растет с глубиной. В поверхностных слоях Земли этот эффект берет верх над идеальным уменьшением, которое следует из выведенной формулы, и величина g возрастает.

Энергия тяготения

На простом примере мы уже познакомились с энергией тяготения. Тело, поднятое на высоту h над землей, обладает потенциальной энергией mgh .

Однако этой формулой можно пользоваться лишь тогда, когда высота h много меньше радиуса Земли.

Энергия тяготения – важная величина, и интересно получить формулу ее, которая годилась бы для тела, поднятого на любую высоту над землей, а также вообще для двух масс, притягивающихся по универсальному закону:

Физика для всех Движение Теплота - изображение 162

Положим, что под действием взаимного притяжения тела немного сблизились. Между ними было расстояние r 1, а стало r 2. При этом совершается работа A = F ( r 1– r 2). Значение силы надо взять в какой-то средней точке. Итак,

Если r 1и r 2мало отличаются друг от друга то можно заменить r ср - фото 163

Если rr 2мало отличаются друг от друга, то можно заменить r ср 2произведением r 1 r 2. Получаем:

Эта работа произведена за счет энергии тяготения A U 1 U 2 где U 1 - фото 164

Эта работа произведена за счет энергии тяготения:

A = U 1− U 2,

где U 1– начальное, а U 2– конечное значение потенциальной энергии тяготения.

Сопоставляя эти две формулы, находим для потенциальной энергии выражение

Физика для всех Движение Теплота - изображение 165

Оно похоже на формулу силы тяготения, но в знаменателе стоит r в первой степени.

По этой формуле при очень больших r потенциальная энергия U = 0. Это разумно, так как на таких расстояниях притяжение уже не будет чувствоваться. Но при сближении тел потенциальная энергия должна уменьшаться. Ведь за ее счет происходит работа.

А куда же уменьшаться от нуля? В отрицательную сторону. Поэтому в формуле и стоит минус. Ведь −5 меньше нуля, а −10 меньше −5.

Если речь идет о движении около земной поверхности, то общее выражение силы тяготения можно заменить произведением mg . Тогда с большой точностью U 1− U 2= mgh .

Но на поверхности Земли тело имеет потенциальную энергию −γ( Mm / R ), где R – радиус Земли. Значит, на высоте h над земной поверхностью

Когда мы впервые ввели формулу потенциальной энергии U mgh было условлено - фото 166

Когда мы впервые ввели формулу потенциальной энергии U = mgh , было условлено высоту и энергию отсчитывать от земной поверхности. Пользуясь формулой U = mgh , мы отбрасываем постоянный член −γ( Mm / R ), условно считаем его равным нулю. Так как нас интересуют лишь разности энергий – ведь обычно измеряется работа, которая есть разность энергий, – то присутствие постоянного члена −γ( Mm / R ) в формуле потенциальной энергии роли не играет.

Энергия тяготения определяет прочность цепей, «привязывающих» тело к Земле. Как порвать эти цепи, как добиться того, чтобы брошенное с Земли тело не вернулось на Землю? Ясно, что для этого нужно придать телу большую начальную скорость. Но каково же минимальное требование?

По мере отдаления от Земли потенциальная энергия выброшенного с Земли тела (снаряда, ракеты) будет расти (абсолютное значение U падает); кинетическая энергия будет падать. Если кинетическая энергия тела станет равной нулю преждевременно, до того как мы оборвем цепи тяготения земного шара, выброшенный снаряд упадет обратно на Землю.

Необходимо, чтобы тело сохраняло кинетическую энергию до тех пор, пока его потенциальная энергия практически не упадет до нуля. Перед отправлением снаряд обладал потенциальной энергией −γ( Mm / R ) ( M и R – масса и радиус Земли). Поэтому снаряду нужно дать такую скорость, которая сделала бы полную энергию оторвавшегося снаряда положительной. Тело с отрицательной полной энергией (абсолютное значение потенциальной энергии больше значения кинетической) не выберется за пределы сферы тяготения.

Таким образом, мы приходим к простому условию. Для того чтобы тело массы m оторвать от Земли, надо, как уже сказано, преодолеть потенциальную энергию тяготения

Физика для всех Движение Теплота - изображение 167

Скорость снаряда должна быть при этом доведена до значения так называемой второй космической скорости v 2, которую легко вычислить из равенства кинетической и потенциальной энергий:

Физика для всех Движение Теплота - изображение 168

или, так как g = γ( M / R 2),

Физика для всех Движение Теплота - изображение 169

Значение v 2, вычисляемое по этой формуле, составляет 11 км/с, – конечно, без учета сопротивления атмосферы. Эта скорость в sqrt(2) = 1,41 раза больше первой космической скорости v 1= sqrt( g R) искусственного спутника, вращающегося около земной поверхности, т.е. v 2= sqrt(2)· v 1.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Китайгородский читать все книги автора по порядку

Александр Китайгородский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Физика для всех. Движение. Теплота отзывы


Отзывы читателей о книге Физика для всех. Движение. Теплота, автор: Александр Китайгородский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x