Александр Китайгородский - Физика для всех. Движение. Теплота
- Название:Физика для всех. Движение. Теплота
- Автор:
- Жанр:
- Издательство:Наука
- Год:1974
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Китайгородский - Физика для всех. Движение. Теплота краткое содержание
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.
Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.
Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
Физика для всех. Движение. Теплота - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Впрочем, перед конструкторами самолетов стоит нелегкая задача – найти компромисс между формами, удобными для сверхзвуковых и для обычных скоростей. Такой компромисс необходим по простой причине – самолет взлетает и садится при относительно небольших скоростях.
В настоящее время имеются реактивные самолеты, летающие со скоростью многих тысяч километров в час, и конструкторы продолжают свою работу, чтобы завоевать еще более высокие скорости. Новые трудности встают на этом пути. Преодолев звуковой барьер, инженеры встретились с тепловым барьером.
Быстро движущийся самолет или снаряд сжимают находящийся перед ними воздух. Сжатие приводит к повышению температуры. Воздух, рассекаемый движущимся телом, нагревается, а значит, нагреваются и стенки самолета.
Повышение температуры оказывается пропорциональным квадрату скорости воздуха. Чем больше скорость, тем больше нагревается воздух. К моменту достижения звукового барьера температура воздуха перед самолетом повышается всего на 60°. Это еще не имеет большого практического значения. Но при скорости движения самолета, в два раза превышающей скорость звука, воздух нагревается уже на 240°, а при достижении утроенной скорости звука воздух получает температуру порядка 820 °C и т.д. Нетрудно понять, что этот нагрев ведет к значительным технологическим осложнениям.
Из приведенных цифр видно, как быстро увеличивается температура при нарастании скорости движения. При движении со скоростями порядка 10 км/с температуры становятся столь значительными, что любое тело плавится и превращается в газ. Из мирового пространства в атмосферу Земли непрерывно падают метеорные тела – камни и камешки различных размеров. Они движутся со скоростями в несколько десятков километров в секунду. На высоте 150–200 км над поверхностью Земли, когда атмосфера становится менее разреженной, эти пришельцы начинают заметно нагреваться, а на высотах порядка 130–60 км температура их возрастает настолько, что они испаряются. Невооруженным глазом мы замечаем накалившийся камешек на ночном небе. В момент, когда мы его увидели, нам кажется, что звезда упала с неба. «Падение звезды» продолжается недолго: доля секунды – и камешек испарился.
Горение и взрыв
Для того чтобы началось горение, надо, как известно, поднести к горючему предмету горящую спичку. Но и спичка не зажигается сама, ею надо чиркнуть о коробку. Таким образом, для того чтобы началась такая химическая реакция, необходимо предварительное нагревание.
Причина этого понятна. Химическая реакция – это перестройка молекулы. Энергичное тепловое движение атомов совершенно необходимо для того, чтобы такая перестройка могла произойти. Поэтому скорости химических реакций очень сильно зависят от температуры. Как правило, повышение температуры на 10° увеличивает скорость реакции в 2–4 раза.
Если скорость реакции увеличивается, скажем, в 3 раза при повышении температуры на 10°, то повышение температуры на 100° дает увеличение в 3 10≈ 60000 раз, на 200° – уже в 3 20≈ 4·10 9, а на 500° – в 3 50, т.е. примерно в 10 24раз.
Неудивительно, что реакция, которая идет с нормальной скоростью при температуре 500 °C, при комнатной температура не происходит вообще. Поджигание создает в начальный момент необходимую для реакции температуру. Дальше высокую температуру поддерживает уже тепло, которое выделяется при реакции.
Начальный местный подогрев должен быть достаточен для того, чтобы выделение тепла при реакции превышало теплоотдачу в окружающую холодную среду. Поэтому каждая реакция имеет свою, как говорят, температуру воспламенения. Горение начинается, только если начальная температура выше температуры воспламенения. Например, температура воспламенения дерева 610 °C, бензина – около 200 °C, белого фосфора – 50 °C.
Горение дров, угля или нефти – это химическая реакция соединения этих веществ с кислородом воздуха. Поэтому такая реакция идет с поверхности: пока не выгорит внешний слой, следующий не может принять участие в горении. Этим и объясняется относительная медленность горения.
В справедливости сказанного нетрудно убедиться на практике. Если размельчать горючее, то скорость горения можно значительно увеличить. Для этой цели во многих печных устройствах производится распыление угля в топках.
Совершенно иначе обстоит дело в том случае, когда воздушная атмосфера не нужна, а все необходимое для реакции содержится внутри вещества. Примером такого вещества является смесь водорода с кислородом (ее называют гремучим газом). Реакция идет не с поверхности, а происходит внутри вещества. В отличие от случая горения вся энергия, образующаяся при реакции, отдается почти мгновенно, вследствие этого резко повышается давление и происходит взрыв. Гремучий газ не горит, а взрывается.
Итак, взрывчатое вещество должно содержать внутри себя атомы или молекулы, нужные для реакции. Понятно, что можно приготовить взрывающиеся газовые смеси. Существуют и твердые взрывчатые вещества. Они являются взрывчатыми именно потому, что в их состав входят все атомы, необходимые для химической реакции, дающей тепло и свет.
Химическая реакция, происходящая при взрыве, – это реакция распада, расщепления молекулы на части. На рис. 132 показана для примера взрывная реакция – расщепление на части молекулы нитроглицерина. Как видно на правой части схемы, из исходной молекулы образуются молекулы углекислого газа, воды, азота. В составе продуктов реакции мы находим обычные продукты горения, но горение произошло без участия молекул кислорода воздуха – все необходимые для горения атомы содержатся внутри молекулы нитроглицерина.

Как распространяется взрыв по взрывчатому веществу, например гремучему газу? Когда поджигают взрывчатое вещество, возникает местный нагрев. Реакция происходит в нагретом объеме. Но при реакции выделяется тепло, которое путем теплопередачи переходит в соседние слои смеси. Этого тепла достаточно для того, чтобы и в соседнем слое произошла реакция. Новые количества выделившегося тепла поступят в следующие слои гремучего газа, и так со скоростью, связанной с передачей тепла, реакция распространяется по всему веществу. Скорость такой передачи – порядка 20–30 м/с. Разумеется, это очень быстро. Метровая трубка с газом взрывается за одну двадцатую долю секунды, т.е. почти мгновенно, в то время как скорость горения дров или кусков углей, происходящего с поверхности, а не в объеме, измеряется сантиметрами в минуту, т.е. в несколько тысяч раз меньше.
Тем не менее можно назвать и этот взрыв медленным, так как возможен другой взрыв, в сотни раз более быстрый, чем описанный.
Читать дальшеИнтервал:
Закладка: