Михаил Терентьев - История эфира
- Название:История эфира
- Автор:
- Жанр:
- Издательство:Фазис
- Год:1999
- Город:Москва
- ISBN:5-7036-0054-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Терентьев - История эфира краткое содержание
… В этой книге рассказывается об истории эфира и о том, как он выглядит в представлении современного физика-теоретика… Дело в том, что нет никаких шансов как следует понять фундаментальные свойства материи…, не разобравшись в свойствах физического вакуума или эфира.
… Необходимость понимания, откуда происходят и в чем состоят основные принципы физики, как трудно они "достались", как трудно в них что-либо изменить, — это столь же неотъемлемый элемент культуры, как и знакомство с наиболее важными фактами в живописи, литературе, истории.
… Я надеюсь, что даже при отсутствии специальной подготовки читатель сможет разделить с автором глубокое чувство благоговения перед красотой фундаментальных законов природы и отдаст должное творческому гению конкретных, замечательных людей, благодаря которым мы многое сейчас понимаем.
Из Предисловия
История эфира - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Максвелл начинает с формулировки основных принципов, по которым должна строиться правильная теория. Как впоследствии отметил тот же Л. Больцман «... последующие исследователи теории познания развили все это подробнее, но... лишь после того, как само развитие совершилось. Здесь же они (принципы) даны еще до начала развития...».
Нужно иметь в виду, что Максвелл не занимается абстрактной философией познания. Его утверждения относятся к проблемам конкретной науки в конкретных обстоятельствах. Он пишет: «... для успешного развития теории необходимо прежде всего упростить выводы прежних исследований и привести их к форме, где разум может их охватить. Результаты такого упрощения могут иметь вид чисто математической формулы или же физической гипотезы. В первом случае мы совершенно теряем из виду объясняемые явления и, хотя мы можем проследить следствия установленных законов, мы не способны получить более широкий взгляд на всевозможные проявления рассматриваемого предмета.
Бели, с другой стороны, мы используем физические гипотезы, то видим явления только через вуаль предубеждения и обязаны этому слепотой по отношению к фактам и грубостью предположений, что предполагает лишь частичное объяснение реальности.
Мы должны поэтому открыть некоторый метод исследования, который позволяет разуму на каждом этапе не отрываться от ясной физической концепции и не быть в то же время связанным какой-нибудь теорией, из которой концепция заимствована. Благодаря этому, мы не будем отвлекаться от предмета преследованием аналитических тонкостей и не отклонимся от истины, подменяя ее излюбленной гипотезой.
Для того, чтобы выработать физические идеи, не принимал до поры какой-либо конкретной физической теории, мы должны использовать существование физических аналогий. Под физической аналогией я понимаю частичное подобие между законами одной науки и законами другой, благодаря чему каждая из них является иллюстрацией для другой...»
Максвелл использует образ несжимаемой жидкости, заполняющей пространство. Никакой реальной физической модели за этим не стоит, хотя для простоты мы будем употреблять слово «модель», обозначая этот образ. Его жидкость — просто собрание воображаемых свойств, иллюстрирующих теоремы чистой математики. Так, он свободно, не заботясь о возможности конкретной реализации, вводит понятие сопротивления R, которое испытывает элемент жидкости при движении в пространстве, и считает, что R пропорционально скорости перемещения этого элемента и (т. е. R = ku). Его жидкость не имеет инерции, т.е. сила сопротивления среды много больше плотности. В таких условиях жидкость движется, если существует давление р — Максвелл вводит такое давление. Линии тока воображаемой жидкости непрерывны во всем пространстве за исключением отдельных точек — «источников» и «стоков». Поверхности постоянного давления всегда перпендикулярны линиям тока.
Представим себе в изотропной среде точечный источник силы S 0, что эквивалентно целому числу S 0некоторых единичных источников. Истекающая жидкость будет двигаться так, как показано на рис. 2.

Если источник действует достаточно долго и распределение жидкости установилось, то в каждый объем в единицу времени втекает ровно столько жидкости, сколько вытекает. При этом, как легко понять, скорость элемента жидкости на расстоянии r от источника будет равна u= S 0/4πr 2 . Представим теперь воображаемую трубку тока жидкости. Она пересекается в каждом месте воображаемой перпендикулярной поверхностью равного давления. Так, на рис. 3 во всех точках поверхности 1 давление равно p 1, в точках поверхности 2 — давление p 2и т.д. Представим себе в этой картине единичный кубический объем жидкости, движущийся перпендикулярно к его граням σ 1и σ 2(см. рис. 4). Поскольку сопротивление, испытываемое таким объемом, равно R = ku, то разность давлений на гранях Δp равна —ku. Отсюда следует, что изменение давления на единицу длины вдоль каждой линии тока дается выражением:

Поэтому:

Теперь, вспоминая форму закона Кулона, можно отождествить давление p(r) с потенциалом φ(r), скорость u(r) — с напряженностью электрического поля (или электродвижущей силой — э. д. с.) Е, источник S 0— с электрическим зарядом, коэффициент к естественно связывается с диэлектрической проницаемостью среды ε. При наличии многих источников в разных точках пространства в рамках сформулированной аналогии получится правильное распределение полей и потенциалов. В итоге Максвелл воспроизводит хорошо известные законы электростатики с помощью механической (точнее — гидродинамической) модели, в которой нет никакого дальнодействия.


Вся физика, относящаяся к этому кругу вопросов, описывается одним уравнением:

где ρ(r) — плотность зарядов, div — стандартная дифференциальная операция, выделяющая из векторного поля E часть, связанную с расходимостью из точки. В статическом случае, когда поле E не зависит от времени, возможна запись E в виде градиента некоторой скалярной функции (потенциала):
E = —grad φ(r).(1)
Все это уже было хорошо известно до Максвелла. Уравнение (А), где вместо поля Е введен потенциал по формуле (1), называется уравнением Пуассона.
Переходя к рассмотрению магнитных явлений и взаимодействия магнитов и токов, Максвелл уже не находит столь простой аналогии. Он становится на путь перевода существующих эмпирических закономерностей на язык дифференциальных уравнений, предполагая, что магнитные величины, в том же смысле, как электрические, как-то могут быть интерпретированы в будущем в терминах гидродинамики новой, магнитной жидкости. Но конкретный образ этой жидкости еще предстоит найти.
В этой работе возникает двойственность, которая будет постоянно прослеживаться дальше. Стремление к механическим аналогиям привязывает Максвелла к своему веку — нельзя же в самом деле писать уравнения для объекта, который явно имеет материальные проявления, в частности, переносит энергию, а с другой стороны, есть «ничто», пустота. В то же время предмет исследования так или иначе не влезает в принятую механическую картину, и Максвеллу приходится следовать логике самих уравнений, оставляя мысль о материальном носителе и признавая неполноту аналогий. Таким образом, то, что он говорил о принципах, на которых должна строиться правильная теория остается (к счастью?) недостижимым идеалом.
Читать дальшеИнтервал:
Закладка: