Стивен Хокинг - Великий замысел
- Название:Великий замысел
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2010
- Город:New York
- ISBN:9780553805376
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Хокинг - Великий замысел краткое содержание
Книга «Великий замысел» — это популярное изложение новейших воззрений физиков на происхождение и эволюцию Вселенной.
Интерес к работам знаменитого физика Стивена Хокинга столь велик, что его новую книгу перевели на русский, не дожидаясь официального издания. И действительно, «Великий замысел» заслуживает внимания, ведь здесь Хокинг в соавторстве с Леонардом Млодиновым взялся раз и навсегда доказать, что космогония не нуждается в гипотезе Бога.
Основное содержание книги — популярный рассказ о так называемой М-теории («материнской» теории), которая описывает наш одиннадцатимерный мир в его разных проявлениях — подобно географическим картам, дающим представление не о всей Земле целиком, а лишь о её части.
Оказывается, М-теория допускает 10
500(десять в пятисотой степени) различных вселенных, и поэтому нет оснований говорить об уникальности той, которая дана нам в ощущениях. Вероятно, она похожа на пузырёк пара в кипящей воде среди неисчислимого множества других пузырьков. Хокинг утверждает, что физические законы нашего мира и само его устройство — результат случайности, которая не может быть описана на рациональном уровне. При этом учёный напоминает об «антропном принципе», согласно которому наш разум не смог бы зародиться ни в какой другой вселенной, а значит, именно человек выступает здесь её центром.
Великий замысел - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Благодаря работе Эйнштейна, физики поняли, что из-за требования, чтобы скорость света была одной и той же во всех системах координат, теории электричества и магнетизма Максвелла определяют, что время нельзя рассматривать отдельно от трех пространственных измерений. Наоборот, время и место взаимосвязаны. Это нечто вроде добавления четвертого направления будущее/прошлое к обычным влево/вправо, взад/вперед, и вверх/вниз. Физики называют это сочетание пространства и времени «пространство-временем», и поскольку пространство-время включает четвертое направление, они называют его четвертым измерением. В пространстве-времени время больше не отделено от трех пространственных измерений, и, грубо говоря, как определение влево/вправо, вперед/назад или вверх/вниз зависит от ориентации наблюдателя, так же направление времени меняется в зависимости от скорости наблюдателя. Наблюдатели, движущиеся на различных скоростях, выбрали бы различные направления для времени в пространстве-времени. Специальная теория относительности Эйнштейна поэтому была новой моделью, которая избавилась от понятий абсолютного времени и абсолютного покоя (то есть, покоя относительно неподвижного эфира).
Эйнштейн скоро понял, что, чтобы согласовать гравитацию с относительностью, необходимо было дополнительное измерение. Согласно теории тяготения Ньютона, в любой момент времени объекты притягиваются друг к другу силой, зависящей от расстояния между ними в этот момент. Но теория относительности упразднила понятие абсолютного времени, поэтому не было никакого способа определить, когда должно быть измерено расстояние между массами. Таким образом, теория тяготения Ньютона не была совместима со специальной относительностью и должна была быть изменена. Противоречие могло походить на простую техническую трудность, возможно, даже детали этого так или иначе могли быть решены обходным путем без большого изменения в теории. Как оказалось, ничего подобного.
За последующие одиннадцать лет Эйнштейн разработал новую теорию тяготения, которую он назвал общей относительностью. Понятие силы тяжести в общей относительности совсем не похоже на Ньютоновское. Вместо этого оно базировалось на революционном предложении, что пространство-время не плоское, как было принято ранее, а изогнуто и искривлено массой и энергией в нем.
Хороший способ изобразить искривление — представить себе поверхность Земли. Хотя поверхность Земли всего лишь двумерна (потому что на ней есть только два направления, например, север/юг и восток/запад), мы собираемся использовать ее в качестве нашего примера, потому что искривленное двумерное пространство легче себе представить, чем искривленное четырехмерное пространство. Геометрия искривленных пространств, таких как поверхность Земли, не представляет собой знакомую нам Евклидову геометрию. Например, на поверхности Земли самое короткое расстояние между двумя пунктами — которое мы знаем как прямую в Евклидовой геометрии — это путь, соединяющий два пункта вдоль так называемого большого круга. (Большой круг — это круг на поверхности Земли, центр которого совпадает с центром Земли. Экватор — пример большого круга, и вообще, любой круг, полученный поворотом экватора вместе с различными диаметрами).
Представьте, скажем, что Вы хотели путешествовать из Нью-Йорка в Мадрид, два города, лежащие почти на одной и той же широте. Если бы Земля была плоской, то самый короткий маршрут должен был держать курс прямо на восток. Если бы Вы так сделали, то прибыли бы в Мадрид, пропутешествовав 3707 миль. Но из-за искривления Земли есть путь, который на плоской карте выглядит кривым и, следовательно, более длинным, но который в действительности короче. Вы можете добраться туда, преодолев 3605 миль, если проследуете по маршруту большого круга, который должен сначала взять курс на северо-восток, затем постепенно повернуть на восток, а затем на юго-восток. Различие в расстоянии между этими двумя маршрутами возникает из-за искривления Земли и свидетельства ее неевклидовой геометрии. Авиалинии знают это и принимают меры, чтобы их пилоты следовали маршрутами большого круга практически всегда.
Согласно законам механики Ньютона, объекты, такие как пушечные ядра, круассаны и планеты, перемещаются по прямым линиям, если на них не действуют силы, такие как сила тяжести. Но гравитация в теории Эйнштейна не является силой, подобно другим; скорее она представляет собой следствие того факта, что масса искажает пространство-время, создавая искривление. В теории Эйнштейна объекты движутся по геодезическим линиям, что ближе всего к прямым в искривленном пространстве. Линии являются геодезическими на плоскости, а большие круги — геодезические на поверхности Земли. В отсутствие вещества, геодезические линии в четырехмерном пространстве-времени соответствуют линиям в трехмерном пространстве. Но когда вещество присутствует, искажая пространство-время, пути тел в соответствующем трехмерном пространстве искривляются в смысле, который в Ньютоновой теории объяснялся силой притяжения. Когда пространство-время искривлено, пути объектов изгибаются, будто какая-то сила воздействует на них.

Из общей теории относительности Эйнштейна выделяют специальную теорию относительности, для случаев с нулевой гравитацией, которая выдаёт почти такие же предсказания, как и теория тяготения Ньютона для среды в нашей Солнечной системе со слабым тяготением — но не совсем. Фактически, если бы общая относительность не принималась во внимание спутниковой навигационной системой GPS, ошибок глобального позиционирования накапливалось бы около десяти километров каждый день! Так или иначе, подлинное значение общей относительности не в применении её в устройствах, которые укажут вам путь до нового ресторана, но скорее в том, что это совершенно новая модель Вселенной, предсказывающая новые явления, такие как гравитационные волны и чёрные дыры. И таким образом общая относительность превратила физику в геометрию. Современные технологии достаточно чувствительны, чтобы позволить нам выполнять множество чувствительных проверок общей относительности, и она выдерживает их все без исключения.
Хотя обе радикально изменили физику, теория электромагнетизма Максвелла и теория гравитации — общей относительности Эйнштейна — обе, подобно собственной физике Ньютона, являются классическими теориями. Значит они — модели, в которых Вселенная имеет единственную историю. Как мы видели в последней главе, на атомных и субатомных уровнях эти модели не согласуются с наблюдениями. Вместо этого мы должны использовать квантовые теории, в которых у Вселенной может быть любая возможная история, каждая со своей собственной амплитудой интенсивности или вероятности. Для практических вычислений, касающихся будничного мира, мы можем продолжать использовать классические теории, но если мы хотим понять поведение атомов и молекул, мы нуждаемся в квантовой версии теории электромагнетизма Максвелла; и если мы хотим понять раннюю Вселенную, когда вся материя и энергия во Вселенной были сжаты в маленький объем, у нас должна быть квантовая версия общей теории относительности. Мы нуждаемся в таких теориях также потому, что, если мы стремимся к пониманию принципов природы, было бы нелогично, если бы некоторые из законов были квантовыми, в то время как другие — классическими. Поэтому мы должны найти квантовые версии всех законов природы. Такие теории называют теориями квантового поля.
Читать дальшеИнтервал:
Закладка: