Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения
- Название:Мечта Эйнштейна. В поисках единой теории строения
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Барри Паркер - Мечта Эйнштейна. В поисках единой теории строения краткое содержание
Barry Parker. Einstein's Dream. The search for a unified theory of the Universe.
В популярной форме изложены современные представления об эволюции Вселенной, рассказано о попытках построения единой теории поля, объединения общей теории относительности и квантовой теории. Без привлечения математического аппарата автор доступно излагает основы теории чёрных дыр, квантовой хромодинамики, супергравитации и суперструн; подробно останавливается на нерешённых проблемах космологии. Попутно рассказывается об учёных, работавших в космологии и смежных областях, и их основных достижениях.
Для читателей, интересующихся современными представлениями и гипотезами о строении и эволюции физического мира.
Мечта Эйнштейна. В поисках единой теории строения - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Четыре уравнения Максвелла – до сих пор основа описания всех электрических и магнитных явлений. Они представляют собой одно из крупнейших достижений физики за всю её историю. Электричество и магнетизм слиты воедино, а связь между ними очень ясно видна из уравнений Максвелла.
Но Максвелл не удовлетворился записью своих уравнений. Он начал исследовать связи между ними и обнаружил, что в определённой комбинации они предсказывают существование волн, волн электричества и магнетизма. Колеблющийся заряд создаёт переменное магнитное поле, оно, в свою очередь, электрическое и так далее. А самым неожиданным и важным оказалось то, что такое комбинированное электромагнитное поле могло существовать самостоятельно – оно отрывалось от колеблющегося заряда и распространялось в пространстве.

Упрощённое изображение электромагнитного поля; показаны его электрическая и магнитная составляющие
Теперь, включая телевизор или слушая радио, вспоминайте с благодарностью Максвелла и его открытие, ведь эти аппараты существуют именно благодаря ему. Работают они примерно так: к теле- или радиоантенне подаётся ток, ускоренно движущиеся в антенне электроны генерируют электромагнитную волну, которая распространяется в пространстве и принимается теле- или радиоприёмником. В схематическом виде эта волна изображена на рисунке: в одной плоскости – изменяющееся электрическое поле, в перпендикулярной ей – магнитное. Направление распространения волны лежит в третьей плоскости, перпендикулярной первым двум.
Постулировав существование таких волн, Максвелл был вынужден попытаться определить их скорость. При помощи остроумной установки он проделал точные измерения и определил эту скорость. Оказалось, что электромагнитные волны распространяются со скоростью света.
Неужели это простое совпадение? Максвелл был уверен, что нет. Если электромагнитные волны и свет имеют одинаковую скорость, то разумно предположить, что они как-то связаны. Максвелл сделал смелый шаг и заявил (как оказалось, справедливо), что свет – это электромагнитная волна и к нему применима его система уравнений. Так произошло ещё одно объединение, на этот раз света с электромагнетизмом.
Теперь становится понятно, почему Эйнштейн был убеждён в возможности объединить тяготение с электромагнетизмом. Раз уж удалось связать электричество с магнетизмом, а потом электромагнетизм со светом, то, видимо, всё в природе едино.
Максвелл предсказал существование электромагнитных волн, но при его жизни их так и не обнаружили. Через десять лет после его смерти Генрих Герц обнаружил первые электромагнитные волны неоптического диапазона – радиоволны. Сейчас известен целый спектр таких волн – радиоволны, микроволны, инфракрасные и волны видимого света. Далее с уменьшением длины волны идут ультрафиолетовое, рентгеновское и гамма-излучение. Открытие законов, описывающих их поведение, было фундаментальным достижением. Действие подавляющего большинства современных бытовых приборов основано именно на нём.
В 1871 году Максвелл занял кафедру в Кембриджском университете и следующие несколько лет посвятил созданию прославленной Кавендишской лаборатории, ставшей впоследствии самой знаменитой и лучше всего оборудованной в Европе (лаборатория названа в честь Генри Кавендиша, известного учёного, ранее работавшего в Кембридже). В течение ряда лет Максвелл занимался редактированием неопубликованных трудов Кавендиша; они вышли в свет в двух томах в 1879 году.
Все, кто знал Максвелла, отзывались о нём как о человеке дружелюбном и очень самоотверженном; однажды, ухаживая за больной женой, он несколько суток провёл без еды и сна. Впрочем, с возрастом он становился всё более нелюдимым, часто им овладевала депрессия. Друзья безуспешно старались развлечь его. Причина этой перемены стала известна позже: у него был рак. Два года он молчал об этом и ничего не предпринимал. В конце концов боли стали непереносимы, и его увезли в Гленэр, где он через две недели скончался. Не стало величайшего физика своего времени, но в том же 1879 году родился более великий – Альберт Эйнштейн.
Благодаря открытым Максвеллом законам электромагнитного поля и полученным Эйнштейном уравнениям гравитационного поля появились две важные, но не связанные друг с другом теории. Посвятим несколько минут сравнению этих полей. Есть у них общие свойства, но есть и значительные различия. Оба нуждаются в источнике: источником гравитационного поля является вещество, а электромагнитного – электрический заряд. Когда заряд колеблется, изменяющееся электрическое поле создаёт магнитное поле, и образующаяся электромагнитная волна распространяется в пространстве. Точно так же при колебании вещества генерируются гравитационные волны. Однако у электромагнитного поля есть два типа источников – положительные и отрицательные заряды. Здесь аналогия с тяготением кончается – вещество бывает только одного вида.
Есть сходство и в изменении интенсивности поля около источника. По мере приближения к источнику электрическое поле становится мощнее. Отсюда вытекает важное следствие – чем меньше расстояние до электрона, тем интенсивнее проявляется поле, а в центре, согласно теории, оно становится бесконечно большим. Говорят, что в этом месте находится сингулярность. Так же обстоит дело и с тяготением, в центре массивного объекта тоже имеется сингулярность.
Этот теоретический вывод очень не нравился Эйнштейну. Он не верил в сингулярности поля и считал, что от них нужно как-то избавляться. «Материальным частицам не место в теории поля», – писал он в журнале «Scientific American» в 1950 году. (Это его высказывание, естественно, связано с проблемой «источников», о которых говорилось раньше в связи с уравнением поля Эйнштейна).
На сходство электромагнитного и гравитационного полей и на возможность их объединения обращали внимание и до Эйнштейна. Первым взялся их объединить немецкий физик Герман Вейль. Он рассмотрел один из аспектов общей теории относительности, о котором мы говорили раньше в связи с римановой геометрией, – несохранение направления в искривлённом пространстве. Для примера рассмотрим земную поверхность, которая представляет собой двумерную поверхность Римана. Два самолёта, находящиеся на некотором расстоянии друг от друга и стартующие от экватора параллельными курсами к Северному полюсу, не будут лететь параллельно друг другу. Их курсы пересекутся на полюсе, т.е., хотя они и начали двигаться в одном направлении (на север), достигнув полюса (и даже раньше), они будут лететь в разных направлениях. Это легко проверить, взглянув на меридианы на глобусе. Из приведённого примера следует, что в искривлённом пространстве направление не сохраняется.
Читать дальшеИнтервал:
Закладка: