Виктор Бродянский - Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии

Тут можно читать онлайн Виктор Бродянский - Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство ФИЗМАТЛИТ, год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии
  • Автор:
  • Жанр:
  • Издательство:
    ФИЗМАТЛИТ
  • Год:
    2001
  • Город:
    Москва
  • ISBN:
    5-9221-0202-8
  • Рейтинг:
    4.44/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Виктор Бродянский - Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии краткое содержание

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - описание и краткое содержание, автор Виктор Бродянский, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В популярной форме рассказывается об истории вечного двигателя от первых попыток его создания до современных «изобретений». Раскрывается значение для энергетики двух фундаментальных законов — первого и второго начал термодинамики. Показана бесполезность попыток обойти эти законы независимо от сложности предлагаемых для этого устройств.

Для широкого круга читателей, интересующихся историей техники и ее современными проблемами.

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - читать онлайн бесплатно полную версию (весь текст целиком)

Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии - читать книгу онлайн бесплатно, автор Виктор Бродянский
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Примерно таким образом граф Румфорд в 1799 г. проводил свой знаменитый опыт, показывающий превращение работы в теплоту при сверлении пушек. Энергия, подводимая в форме механической работы вращения сверла, отводилась водой, которая при этом нагревалась от температуры Т 1до температуры Т 2(Т 2> Т 1). Внутренняя энергия воды (обозначим ее U) возрастала при этом от U 1до U 2. Затем вода остывала снова до температуры Т 1, отдавая энергию в форме теплоты Q окружающей среде. Если охладить воду до прежней температуры, то ее внутренняя энергия остается такой же, как и вначале; количества теплоты Q и работы L будут равны. Если же охладить воду до какой-либо промежуточной температуры Т 3, более высокой, чем Т 1, то количество отводимой теплоты будет меньше, так как часть подведенной энергии остается в виде прироста ΔU внутренней энергии воды.

Таким образом, закон сохранения энергии будет выражаться классической формулой, связывающей теплоту и работу:

L = Q + ΔU. (2.1)

Затраченная работа может как идти на увеличение внутренней энергии тела ΔU, так и отводиться в виде теплоты Q. Если ΔU = 0, то Q = L. Формула (2.1) и выражала закон сохранения энергии в его наиболее простой форме. Возникла и наука, которая специально рассматривала взаимные превращения теплоты и работы, — термодинамика .

Термодинамика в начале своего развития рассматривалась только как наука о взаимных превращениях теплоты и работы [28] Термин «первое начало (основной закон) термодинамики» как принцип эквивалентности теплоты и работы ввел Р. Клаузиус в 1850 г. . По мере дальнейшего развития, она постепенно охватывала и другие энергетические превращения, связанные с электрическими, магнитными, химическими, а также квантовыми явлениями. Соответственно расширялись и понятия работы L и внутренней энергии U. Таким образом, сфера действия первого закона термодинамики охватила по существу все области энергетических превращений и стала соответствовать по своему содержанию закону сохранения энергии.

Поэтому в дальнейшем мы будем использовать термин «первый закон термодинамики» как синоним термина «закон сохранения энергии». Так будет удобнее в дальнейшем при рассмотрении второго закона термодинамики и сопоставлении его с первым.

Изложим коротко некоторые формулировки и положения, связанные с первым законом термодинамики, которые понадобятся в дальнейшем при анализе новых ppm.

Существует целый ряд одинаково правильных формулировок первого закона термодинамики. Нам важно выбрать из них такую, которая в наибольшей степени была бы удобна для разоблачения ppm-1. С этой точки зрения, казалось бы, наиболее подходит самая близкая к нашей теме: «Вечный двигатель первого рода невозможен». Однако при всей четкости и категоричности такой формулировки она не говорит о том, как определить, что то или иное устройство именно и есть вечный двигатель. Ведь прежде, чем запретить, нужно знать что запретить!

Рис 25 Энергетический баланс системы а реальный двигатель б ppm1 - фото 38
Рис. 2.5. Энергетический баланс системы: а — реальный двигатель; б — ppm-1

Поэтому более удобна другая формулировка: «При любых превращениях в системе [29] Речь, разумеется, идет о такой системе, параметры которой в ходе процесса не меняются. В нашем случае это означает, что энергия внутри нее не накапливается и не расходуется. входящий в нее поток энергии всегда равен выходящему». Об этом хорошо сказано в «Фейнмановских лекциях по физике»: «…можно взять какое-то число и спокойно следить, как природа будет выкидывать любые свои трюки, а потом опять подсчитать это число — и оно останется прежним». Здесь «число» — это значение энергии. Дня того чтобы определить, существует такое равенство или нет [30] Если равенства нет, можно выносить приговор: перед нами ppm-1, он жить не будет. , нужно составить энергетический баланс — подсчитать все потоки входящей энергии (обозначим их знаком ' — вход) и выходящей (обозначим их знаком ʺ — выход). Чтобы не ошибиться и не пропустить какой-нибудь из них, окружим наш двигатель воображаемой оболочкой — контрольной поверхностью (она показана на рис. 2.5, штриховой линией). Потоки энергии обозначены стрелками. На входе в общем случае это может быть поток теплоты Q' и поток энергии, которую вносит входящее вещество (например, пар, вода, топливо и т. д.). Энергия в потоке вещества обозначается буквой Н. На выходе нужно учесть выходящую теплоту Q, поток энергии, выносимый отработавшим веществом Нʺ, и, наконец, работу Lʺ. Первый закон утверждает, что входящая энергия W' т. е. сумма Q' + Нʺ, обязательно должна быть равна выходящей Wʺ, т. е. сумме Qʺ + Hʺ + Lʺ (если, конечно, внутри двигателя энергия не накапливается и не расходуется, ΔU = 0):

W' = Q' + H' = Qʺ + Нʺ + Lʺ = Wʺ. (2.2)

Поскольку по первому закону все виды энергии эквивалентны, легко подсчитать значения каждой из этих величин в одних и тех же единицах (калориях, джоулях или киловатт-часах).

Из уравнения (2.2) следует, что отводимая работа в точности равна сумме изменений энергии рабочего тела и теплоты:

Lʺ = (Q' — Qʺ) + (H' — Нʺ). (2.3)

Подсчитав их, мы найдем работу двигателя, равную Lʺ.

Из первого закона термодинамики следует, что получаемая работа не может быть ни меньше, ни больше Lʺ.

Первый случай (W' > Wʺ) нас здесь не интересует, хотя он — тоже нарушение закона сохранения (энергия исчезает), но второй (энергия берется «ниоткуда») как раз и соответствует ppm-1. Такое устройство существовать не может.

Мы взяли для анализа общий, сложный случай — с теплотой и потоком вещества (в дальнейшем он понадобится тоже). Однако все рассмотренные в гл. 1 двигатели проще — они не связаны ни с тем, ни с другим [31] Циркулирующее внутри рабочее тело (например, вода) не учитывается, так как оно не проходит через контрольную поверхность. . Дня них уравнения (2.2) или (2.3) будут выглядеть более просто, так как (Q = 0 и H = 0, а следовательно, и W' = 0. Тогда и

Wʺ = Lʺ = 0, (2.4)

и работа этих устройств должна быть равна нулю. Если же изобретатель утверждает, что L ≠ 0, то это будет только воображаемое, в реальности не могущее действовать устройство, противоречащее условию (2.4), т. е. ppm-1 (рис. 2.5, б).

Таким образом, первый закон термодинамики позволяет не вникать в детали устройства для того, чтобы определить — будет двигатель работать или нет. Нужно просто «заключить» его внутрь контрольной поверхности и подсчитать, сколько всего входит энергии (W) и сколько выходит (Wʺ), и если выходит больше, чем входит (Wʺ > W'), то дискуссия закончена. Налицо нарушение закона природы: получение энергии из ничего. Вечный двигатель первого рода невозможен.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Виктор Бродянский читать все книги автора по порядку

Виктор Бродянский - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии отзывы


Отзывы читателей о книге Вечный двигатель — прежде и теперь. От утопии — к науке, от науки — к утопии, автор: Виктор Бродянский. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x