Гэвин Претор-Пинни - Занимательное волноведение. Волненя и колебания вокруг нас
- Название:Занимательное волноведение. Волненя и колебания вокруг нас
- Автор:
- Жанр:
- Издательство:Лайвбук
- Год:2012
- Город:М.
- ISBN:978-5-904584-33-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Гэвин Претор-Пинни - Занимательное волноведение. Волненя и колебания вокруг нас краткое содержание
Приготовьтесь: вас ждет кругосветное путешествие по всевозможным волнам: от серферских океанических до мозговых, радио-, микро-, инфракрасных, акустических, световых и многих прочих.
Претор-Пинни предлагает нам заново взглянуть на наш постоянно взволнованный мир.
Занимательное волноведение. Волненя и колебания вокруг нас - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Таков принцип рефракции. В случае со звуковыми волнами приближающаяся область более высокого давления, или фронт волны, ведет себя на манер пререкающихся зеленых человечков. Достигая границы со средой, при прохождении через которую ее скорость замедляется, она меняет направление — совсем как те пришельцы. При условии приближения волны к границе под непрямым углом, а не «в лоб», один ее конец замедляется раньше, чем остальная часть волны пересечет границу, и начинает скруглять фронт волны до определенной точки в противоположном направлении. Как только гребень границу пересекает, волна начинает двигаться в несколько ином направлении. Направление движения вновь меняется — в обратную сторону, — когда звуковая волна входит в среду, где ее движение ускоряется. Само собой, звуковые волны не являются предметами, которые перемещаются в воздухе или по земле вроде тех ковыляющих инопланетян, — они представляют собой последовательности из сжатий и разрежений, вызванных колебаниями среды. Ну и серебристых скафандров на них, понятное дело, тоже нет.
Вы заметили, что в тумане звук распространяется дальше? К примеру, вы отчетливо слышите отдаленный смех. Или колокольный звон, который обычно до вас не доносится. Мне всегда нравилось прогуливаться в тумане — когда при этом слышишь звуки, кажется, что они долетают из потустороннего мира. На самом деле причина не в самом тумане — висящие в воздухе крошечные капельки воды слишком малы, чтобы влиять на звук. Влияет на него температура воздуха возле поверхности земли, которая и приводит к образованию тумана; именно благодаря ей перезвон церковных колоколов разносится далеко по округе.
Температура воздуха в процессе подъема меняется, что сказывается на отражении звуковых волн — через теплый воздух они распространяются быстрее, нежели через холодный. Обычно с набором высоты температура понижается, из-за чего звуковые волны отражаются вверх, уходя от земли по кривой траектории. Поскольку звуковая волна колокольного звона искривляется вверх, она в конце концов поднимается так высоко, что звона больше не слышно. Туман образуется при обратной температурной норме — когда воздух у поверхности земли прохладнее, чем на высоте. Данный феномен называется температурной инверсией; в тумане звуковые волны искривляются вниз, по направлению к земле, а не по направлению к атмосфере.
Инверсия нормальных температур происходит в том случае, когда воздух у поверхности земли в безоблачную зимнюю ночь охлаждается, а земля при этом быстро отдает накопленное за день тепло. Или же когда поток воздуха проходит над особенно холодным озером или океаническим течением. Но какова бы ни была причина тумана, температурная разница вынуждает звук распространяться через прохладный воздух у поверхности земли с меньшей скоростью, нежели через более теплый воздух верхних слоев атмосферы. Именно благодаря этой местной температурной инверсии звуковые волны устремляются не от земли, а к земле. Звук «обнимает» землю, в результате чего колокола слышны гораздо дальше, чем при обычной погоде.

Вы можете подумать, что на самом деле Второй закон волны никакого отношения к распространяющимся через воздух звуковым волнам не имеет — волны ведь не пересекают границу, «переходя из одной среды в другую». Однако для изменения направления волнам необходимо всего-навсего изменить скорость. А для этого достаточно плавной смены характеристик среды, в которой они находятся, например, изменения температуры воздуха. Скорость волн при таком условии меняется, и нет необходимости ни в резкой границе между средами, ни в наличии принципиально иной среды.
Моряки, оказываясь в тумане слишком близко от берега, давно уже научились оборачивать звуковую рефракцию себе на пользу. До изобретения радара, не говоря уж о GPS-навигации, нахождение судна в прибрежных водах зачастую оканчивалось трагически.
Однако мореходы, вооруженные знанием о том, что в условиях температурной инверсии звуковые волны проходят над морской поверхностью большее расстояние, изобрели грубое подобие эхолокатора — они кричали в туман, прислушиваясь к отражавшемуся от прибрежных скал эху. Улавливая направление, откуда шло отражение звука, и высчитывая секунды, затраченные отраженным звуком на путь, моряки худо-бедно представляли себе местонахождение береговой линии — чем период запаздывания короче, тем большая земля ближе. А поскольку прохладный воздух у самой воды направлял отраженный звук вниз, до моряков доносилось эхо, возвращавшееся с большего, нежели обычно, расстояния.
Мне радостно сознавать, что попытка использовать принцип рефракции для улавливания происходящего на другом конце мира помогла объяснить загадочный Розуэллский инцидент 1947 года; благодаря этому событию тихий городок посреди пустыни в штате Нью-Мексико обрел статус мировой столицы НЛО. Только не подумайте, будто я питаю нездоровое пристрастие к инопланетянам и пустыне.
Разобравшись в сути процесса рефракции, мы похороним одну из самых живучих теорий заговоров: почему обломки НЛО были найдены возле Розуэлла, а факт их обнаружения тщательно скрыт запаниковавшим военным чином. Началась же вся эта история с одного ученого.
Во время Второй мировой войны доктор Морис Юинг, геофизик из Океанографического института Вудс-Хоул, штат Массачусетс, сделал открытие, связанное с проходящими через океанические толщи звуковыми волнами. Юинг специализировался на изучении строения морского дна с помощью звуковых волн, и потому ВМС США поручили ему исследовать поведение звука под водой — от этого в немалой степени зависел исход так называемой войны субмарин. В 1943 году ученый доказал существование подводного звукового канала на глубине около километра (в зависимости от географической широты). Канал улавливает звуковые волны; распространяясь внутри канала, они проходят гораздо большие расстояния. В основе же такого поведения волн лежит принцип рефракции.
В типичной океанической акватории средних широт скорость звуковых волн, распространяющихся через поверхностные слои воды, равна примерно 5 500 км/ч (широта имеет значение, поскольку температура воды на экваторе и на Южном или Северном полюсе сильно разнится). По мере погружения температура понижается, а значит, и скорость замедляется: до 5 310 км/ч на глубине около 1,2 км. На еще большей глубине температура перестает падать, однако давление воды по-прежнему растет. Благодаря растущему давлению звук снова набирает скорость. На глубине около 5 км скорость звука возвращается к цифре 5 500 км/ч. В подводном звуковом канале на глубине чуть менее километра звук идет с самой низкой скоростью (в теплой воде тропиков подводный звуковой канал находится глубже; чем ближе к полюсам, тем глубина залегания канала меньше). Благодаря эффекту рефракции глубина подводного звукового канала также является областью задержки большей части энергии, переносимой звуковой волной — волна не может распространяться ни вверх, ни вниз, а только по горизонтальной плоскости.
Читать дальшеИнтервал:
Закладка: