Гэвин Претор-Пинни - Занимательное волноведение. Волненя и колебания вокруг нас

Тут можно читать онлайн Гэвин Претор-Пинни - Занимательное волноведение. Волненя и колебания вокруг нас - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys, издательство Лайвбук, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Занимательное волноведение. Волненя и колебания вокруг нас
  • Автор:
  • Жанр:
  • Издательство:
    Лайвбук
  • Год:
    2012
  • Город:
    М.
  • ISBN:
    978-5-904584-33-7
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Гэвин Претор-Пинни - Занимательное волноведение. Волненя и колебания вокруг нас краткое содержание

Занимательное волноведение. Волненя и колебания вокруг нас - описание и краткое содержание, автор Гэвин Претор-Пинни, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Приготовьтесь: вас ждет кругосветное путешествие по всевозможным волнам: от серферских океанических до мозговых, радио-, микро-, инфракрасных, акустических, световых и многих прочих.

Претор-Пинни предлагает нам заново взглянуть на наш постоянно взволнованный мир.

Занимательное волноведение. Волненя и колебания вокруг нас - читать онлайн бесплатно полную версию (весь текст целиком)

Занимательное волноведение. Волненя и колебания вокруг нас - читать книгу онлайн бесплатно, автор Гэвин Претор-Пинни
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вслед за этим Эйнштейн предположил: если свет действительно состоит из квантов, тогда, возможно, в результате этого самого фотоэлектрического эффекта электрон выбивается с поверхности металла при поглощении кванта света. Если так, то количество электронов, отлетающих от металлической поверхности каждую секунду, будет зависеть от количества прибывающих за эту секунду квантов, то есть от интенсивности света. В то время как максимальная скорость, с которой они отлетают, будет зависеть от энергии в каждом кванте, их выбивающем, то есть от частоты света (иначе — цвета).

Десятью годами позже, в 1916 году, предположения Эйнштейна подтвердились. {154} 154 Millikan, Robert A., “A direct photoelectric determination of Planck's 'h'”, Phys. Rev. 7: 355-88 (1916). Когда определенные металлы освещались красным светом, обладающим сравнительно низкой частотой, электроны с поверхности металлов не выбивались, каким бы ярким свет ни был. А вот при освещении зеленым светом, обладающим средней частотой, электроны покидали свои места с готовностью. Однако отлетали они с одной и той же максимальной скоростью, вне зависимости от того, насколько свет был ярким. Их скорость значительно возрастала, когда металлическую поверхность освещали пусть и совсем слабым, но фиолетовым светом, обладающим высокой частотой.

Объяснить такое явление с позиций волновой природы света было невозможно. Однако все расставила по местам гипотеза о свете, состоящем из квантов энергии, причем, объем этой энергии, содержащийся в каждом кванте, зависел от частоты. Фотоэлектрический эффект подтвердил предположение Эйнштейна о том, что свет состоит из отдельных квантов, а не разбегающихся волн. Но как научная общественность в свое время держалась за ньютоновскую теорию о свете как частицах, противясь доказательствам Юнга в пользу волновой природы света, так и в первой половине XX века она крайне неохотно пошла на замену теории Юнга теорией Эйнштейна, вновь описывавшего свет как частицы. Его гениальная догадка была отвергнута современниками, утверждавшими, что «дерзкая» гипотеза «идет вразрез с неопровержимыми фактами» и что она «не в состоянии пролить свет на природу излучения». [66] Первая цитата: Robert A. Millikan in Phys. Rev. 7: 355-58 (1916). Вторая цитата: речь Нильса Бора во время вручения ему Нобелевской премии по физике в 1922 году.

Однако Эйнштейн твердо держался своих убеждений. «Существование светового кванта практически доказано», — пи сал он другу в 1916 году, вскоре после того, как его предположение о существование фотоэлектрического эффекта было подтверждено экспериментальным путем. Но в полной мере теорию Эинштейна приняли только в 1921 году, когда он получил Нобелевскую премию за свою работу 1905 года на тему квантовой природы света. Спустя пять лет световые кванты, о которых впервые упомянул Планк (сам в них не веривший) и существование которых доказал Эйнштейн, стали известны как фотоны.

Все вновь переменилось: свет все же состоит из частиц.

* * *

А что же Томас Юнг с его экраном? Разве демонстрация интерференции света, идущего через прорези в экране, не доказала со всей убедительностью, что свет ведет себя как волна? Опыт подтвердил волновую природу света. Две частицы — неважно, как вы их при этом назовете: корпускулами, квантами, фотонами или даже мельчайшими, меньше атома, карамельками — не могут соединиться таким образом, чтобы в итоге дать ноль частиц, как это происходит с несовпадающими по фазе и, следовательно, взаимно уничтожающимися волнами.

Любопытно, что произойдет, если пропускать эти «карамельки» через прорези экрана по одной. Ведь не получится же так, что наша «карамелька» пройдет через обе прорези одновременно и сама с собой интерферирует, а?

Что ж, какой бы невероятной задача ни казалась, выполнить ее возможно — с помощью фильтров, которые сократят интенсивность света, позволяя пропускать через прорези фотон за фотоном. Вместо того чтобы после прохождения через прорезь ударяться о стену, каждый фотон улавливается высокочувствительной камерой и записывается в виде белой точки.

Поначалу кажется, будто электроны располагаются в случайном порядке, однако по мере увеличения количества белых точек вырисовывается довольно любопытная картина:

Видите что получается Фотон за фотоном и начинает угадываться знакомая схема - фото 116
Видите, что получается? Фотон за фотоном, и начинает угадываться знакомая схема {155} 155 Dimitrova, T.L. and Weis, A., “The wave-particel duality of light: A demonstration experiment”, Am. J. Phys. 76 (2) (2008).

Образовались светлые и темные области, своим расположением точь-в-точь повторяющие интерферирующие края на схеме Юнга. При этом большая часть фотонов сконцентрировалась в тех местах, где предполагались светлые участки, и совсем мало фотонов оказалось в тех местах, где предполагались темные участки. Выходит, данная схема нисколько не отличается от оптической схемы интерферирующих волн. Можно предположить, как выразился Поль Дирак, один из ученых, стоявших у истоков квантовой физики, что «каждый фотон интерферирует исключительно сам с собой». {156} 156 Дирак, П. А. М. Принципы квантовой механики. М., Наука, 1979. Вы подумаете: то, чем фотон занимается наедине с собой в затемненном боксе, касается его одного. Однако Дирак при этом подчеркивает: у нас нет ни малейшей догадки о том, почему отдельные фотоны иногда ведут себя как волны.

Портрие Порт 1888 Поля Синьяка Собравшиеся таким образом точки напоминают - фото 117
«Портрие. Порт» (1888) Поля Синьяка

Собравшиеся таким образом точки напоминают одно направление в живописи — пуантилизм. Получившуюся схему можно сравнить с картиной Поля Синьяка 1888 года, на которой он изобразил мелкую рябь в порту Портрие в Бретани. Наверняка это самая утомительная манера письма: художник касается холста кистью, нанося маленькие точки — одну за другой. (Наиболее известной картиной данного жанра считается «Воскресный день на острове Гранд-Жатт» Жоржа-Пьера Сера. Подумать только, на ее написание у художника ушло два года!) Ну хорошо, точки на холсте ставит художник. Но вот кто располагает фотоны? Чья таинственная рука управляет их размещением на экране, поначалу хаотичным, однако со временем вырастающим в пуантилистическую схему волновой интерференции?

Складывается такое впечатление, будто путь каждого фотона определяется волной — словно свет ведет себя как волна при движении и как частица при контакте с камерой [67] Современная наука считает, что свет ведет себя как квантово-механическая волна при распространении и как частица при обнаружении. . «Как только возникла частица, — сказал физик Джордж Паджет Томсон, — волна исчезла, как исчезает сон при пробуждении». {157} 157 Томсон, Джордж Паджет. Нобелевская лекция. Электронные волны. Таков на первый взгляд противоречивый мир квантовой механики, в рамках которой двойственность поведения электромагнитных волн теперь может быть объяснена математически. Противоречивое поведение света в теорию вполне укладывается, но вот приблизила ли она нас к пониманию того, что свет, собственно, такое? Ричард Фейнман, квантовый физик с мировым именем, считает, что нет: «Дело в том, что мои студенты-физики тоже этого не понимают. Потому что я сам этого не понимаю. Никто не понимает». {158} 158 Фейнман, Ричард. КЭД — странная теория света и вещества. Лекция 1. М., Наука, 1988 г.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Гэвин Претор-Пинни читать все книги автора по порядку

Гэвин Претор-Пинни - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательное волноведение. Волненя и колебания вокруг нас отзывы


Отзывы читателей о книге Занимательное волноведение. Волненя и колебания вокруг нас, автор: Гэвин Претор-Пинни. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x