Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра

Тут можно читать онлайн Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра - бесплатно ознакомительный отрывок. Жанр: sci-phys, издательство Физматлит, год 2010. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Астероидно-кометная опасность: вчера, сегодня, завтра
  • Автор:
  • Жанр:
  • Издательство:
    Физматлит
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-9221-1241-3
  • Рейтинг:
    4.5/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Борис Шустов - Астероидно-кометная опасность: вчера, сегодня, завтра краткое содержание

Астероидно-кометная опасность: вчера, сегодня, завтра - описание и краткое содержание, автор Борис Шустов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Проблема астероидно-кометной опасности, т. е. угрозы столкновения Земли с малыми телами Солнечной системы, осознается в наши дни как комплексная глобальная проблема, стоящая перед человечеством. В этой коллективной монографии впервые обобщены данные по всем аспектам проблемы. Рассмотрены современные представления о свойствах малых тел Солнечной системы и эволюции их ансамбля, проблемы обнаружения и мониторинга малых тел. Обсуждаются вопросы оценки уровня угрозы и возможных последствий падения тел на Землю, способы защиты и уменьшения ущерба, а также пути развития внутрироссийского и международного сотрудничества по этой глобальной проблеме.

Книга рассчитана на широкий круг читателей. Научные работники, преподаватели, аспиранты и студенты различных специальностей, включая, прежде всего, астрономию, физику, науки о Земле, технические специалисты из сферы космической деятельности и, конечно, читатели, интересующиеся наукой, найдут для себя много интересного.

Астероидно-кометная опасность: вчера, сегодня, завтра - читать онлайн бесплатно ознакомительный отрывок

Астероидно-кометная опасность: вчера, сегодня, завтра - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Борис Шустов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Оптическая схема одиночного телескопа Pan-STARRS представляет собой систему квази-Ричи — Кретьена. Эквивалентное фокусное расстояние телескопа равно 8 м, соответствующий масштаб изображения — 38,8 микрон в угловой секунде. Пиксел детектора размером 15 мкм проецируется на небо в пределах угла 0,4″.

Телескоп PS1 установлен на Гавайях, построен в 2006 г., а в 2007 г. был сдан в эксплуатацию. В проекте PS планируется использование гигапиксельной ПЗС-системы с квантовой эффективностью не хуже 66 % в пике спектральной чувствительности. На рис. 6.10 (см. вклейку) показана мозаика из ПЗС-матриц, которая будет использоваться в качестве детектора изображения для телескопа PS1. Она состоит из 60 мозаик, каждая из которых включает 8×8 отдельных ПЗС-матриц, размещенных на одной подложке. В качестве монтировки используется монтировка лазерного дальномера, переданная ученым американскими военными. Этот телескоп позволит отработать все основные моменты работы обзорного телескопа PS4.

Рис 611 Изображение кометы Холмса полученное на телескопе PS1 в 2008 г - фото 118

Рис. 6.11. Изображение кометы Холмса, полученное на телескопе PS1 в 2008 г. (http://pan-starrs.ifa.hawaii.edu/public/)

В настоящее время осуществляется тестирование телескопа PS1. На рис. 6.11 представлено изображение кометы Холмса, полученное на этом телескопе.

В проекте PS4 на одной монтировке планируется разместить четыре таких телескопа, которые будут направлены одинаково. Запуск полноценной версии PS4 планируется к 2010 г. Сколько всего таких инструментов следует изготовить и как их расположить, вопрос пока остается открытым.

6.3.2. Работы по созданию наземных оптических систем обнаружения и сопровождения, проводимые в России.В России работы по созданию современной системы обнаружения телескопами с апертурой свыше 1 м проводятся, по-видимому, только в Институте солнечно-земной физики (ИСЗФ) СО РАН. Такая система обнаружения строится на базе телескопа АЗТ-33, разработанного в ЛОМО. С использованием современной ПЗС-системы, покрывающей большую часть поля зрения, эта система сможет иметь диаметр поля зрения около 3° с проницающей способностью до 23 mпри экспозиции около 1 мин. Этот телескоп диаметром 1,6 м находится в стадии изготовления, и уже подготовлена астрономическая башня для его установки на Саянской обсерватории в Мондах, где смонтирован и работает также телескоп АЗТ-33ИК, ориентированный на исследования космических объектов в инфракрасной области спектра (см. рис. 6.12 на вклейке). АЗТ-33ИК может быть использован и в программах изучения физических свойств открытых и вновь открываемых объектов.

Разработки обзорных телескопов большого диаметра в России проводились и проводятся (см., напр., [Аронов и др., 2007]). Но пока в России не будет на государственном уровне принята целевая программа развития отечественных средств обнаружения и мониторинга потенциально опасных небесных тел, такие разработки в области астероидно-кометной опасности будут не востребованы. Стоит также упомянуть об обзорных телескопах, которые могут использоваться для нужд обороны. Опыт США показывает, что если решения о создании системы мониторинга принимаются на государственном уровне, то отдельные элементы такой системы можно довольно быстро создать при минимальном дополнительном вложении средств за счет уже имеющихся ресурсов в других областях деятельности государства, например, используя телескопы, предназначенные для контроля космического пространства в прикладных целях.

Обсудим необходимые доработки существующих российских телескопов для их возможного использования в качестве телескопов обнаружения.

Как правило, существующие астрономические инструменты предназначены для исследований небольших участков неба и имеют фокусные расстояния, превышающие несколько метров. В основном на российских обсерваториях установлены телескопы системы Кассегрена или Ричи — Кретьена. Такие инструменты имеют поля зрения менее 1°, но линейные размеры этих полей нередко превышают 10 см. Понятно, что при использовании приемника 3 × 3 см, большая часть поля зрения «пропадает». Для использования всего доступного поля зрения с современным единичным ПЗС-приемником (не блоком) необходима разработка и создание специального оптического устройства, вводимого в оптическую схему телескопа, которое, с одной стороны, согласует разрешение матрицы с масштабом изображения, и, с другой стороны, дает более или менее качественное поле зрения и позволяет использовать все теоретически доступное поле зрения телескопа. Понятно, что такие узкопольные телескопы рационально использовать только для задачи мониторинга, но не обнаружения.

Вторая очевидная проблема — это дооснащение телескопов действительно современными приемниками излучения.

Основная характеристика приемника, которая определяет проницающую способность инструмента — это квантовая эффективность. У современных приемников она достигает 90 % в видимом диапазоне спектра. Вторая важная характеристика — это динамический диапазон. Для приемника на основе ПЗС-матрицы эта характеристика напрямую связана с размером пиксела. Для пиксела размером 16 × 16 мкм емкость заряда, который этот пиксел может накопить, равна примерно 180 000 зарядов электрона. Меньше размер — меньше емкость — меньше динамический диапазон. Кроме того, размер пиксела и их число определяют линейные размеры всей матрицы.

Для уменьшения темновых токов, которые становятся существенным негативным фактором в условиях накопления, в астрономических матрицах применяются системы охлаждения. Как правило, это либо элементы Пельтье, либо системы азотного охлаждения. Элементы Пельтье дают «умеренное» охлаждение. Один каскад при условии эффективного отвода тепла с нагреваемой поверхности дает разность температур примерно в 30 градусов между нагреваемой и охлаждаемой поверхностями. Соответственно двухкаскадный элемент Пельтье дает охлаждение примерно на 50 градусов. Подчеркнем, что такое охлаждение достигается относительно температуры окружающего воздуха. Так, если температура возле телескопа +20 °C, то температура матрицы может достигать –35 °C. Азотное охлаждение позволит получить температуру светочувствительной поверхности до –130 °C. Недостатком второго типа охлаждения является необходимость периодической заправки азотом, а значит, нужно иметь под рукой источник азота. Это не всегда может быть выполнено.

Опыт работы специализированных инструментов показывает, что для целей мониторинга на переоборудуемом телескопе хорошо подходит ПЗС-матрица с числом пикселов не менее 2048 × 2048, с размером пиксела около 16 × 16 мкм и охлаждением 2– или 3-каскадным элементом Пельтье.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Борис Шустов читать все книги автора по порядку

Борис Шустов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Астероидно-кометная опасность: вчера, сегодня, завтра отзывы


Отзывы читателей о книге Астероидно-кометная опасность: вчера, сегодня, завтра, автор: Борис Шустов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x