Владилен Барашенков - Кварки, протоны, Вселенная
- Название:Кварки, протоны, Вселенная
- Автор:
- Жанр:
- Издательство:Знание
- Год:1987
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владилен Барашенков - Кварки, протоны, Вселенная краткое содержание
В книге рассказывается об узловых проблемах современной физической картины мира: о черных и белых дырах во Вселенной, о «прелестных», «ароматных» и «цветных» частицах — кварках, о космических мирах, спрятанных внутри частиц, о пустоте, которая оказывается не пустотой, а материальной субстанцией, о квантах пространства и квантах времени, о гипотетических монополях и антивеществе.
Для широкого круга читателей.
Кварки, протоны, Вселенная - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Давайте подсчитаем теперь, сколько же осталось самых элементарных», не сводимых друг к другу частиц.
Прежде всего это кварк и антикварк плюс связывающая их частица глюон . Ее название происходит от английского слова glue — клей. Глюонное поле связывает кварки и антикварки, подобно тому, как электромагнитное поле и его кванты — фотоны — «привязывают» электроны к ядру в атоме. Хотя глюоны тоже еще никогда не наблюдались в «живом виде», без них нельзя построить адронов. В список «самых элементарных» придется также включить упомянутый фотон и опять же не наблюдавшуюся еще частицу поля тяготения — гравитон. Еще семь лептонов — электрон, нейтрино трех типов, мю- и тау-мезоны и соответствующие антилептоны.
Итак, вместо нескольких сотен — всего лишь два десятка основных элементов. При этом почти треть их еще экспериментально не открыта. Однако без них не удается построить последовательной теории — она рассыпается. Но, с другой стороны, и два десятка, а точнее 19 «самых элементарных»,— это многовато. И почему, собственно, 19, а не 14 или, скажем, не 27? Невольно возникает подозрение, что эти «первоэлементы» не все независимы и число их, наверное, можно еще уменьшить.
Правда, на первый взгляд это просто невозможно — уж очень сильно различаются по своим свойствам эти девятнадцать. Например, электрон — это частица, которая может иметь любую скорость, быть и быстрой, и медленной, а вот фотон или нейтрино всегда летят с скоростью света. Массы частиц и силы, с которыми он взаимодействуют, различаются в сотни и тысячи раз; Казалось бы, ничего общего.
И тем не менее некоторые из этих частиц могут оказаться родными братьями и сестрами. Хотя это пока — чистая теория, как шутят физики,— из области фантастики и, может быть, даже не совсем научной.
Несколько лет назад известный пакистанский физик Абдус Салам (он возглавляет Международный институт Теоретической физики в Триесте), и английский физик Джордж Пати выдвинули смелую гипотезу о том, что лептоны — не самостоятельные частицы, а всего лишь четвертое цветное состояние кварка. Их не смутило, что свойства частиц, объединенных ими в кварк, различаются столь сильно. Они полагали, что это всего-навсего результат влияния окружающего фона. Ведь согласно современным представлениям каждая частица играет роль как бы затравочного центра, вокруг которого образуется облако спонтанно рождающихся и быстро исчезающих частиц. Это облако экранирует частицу изменяет ее свойства. Такие заэкранированные, закутанные в облако частицы с измененными или, как говорят эффективными свойствами, мы всегда и наблюдаем в опытах. Невозможно ведь изолировать частицу от взаимодействия со средой, даже если это глубокий вакуум. Ничто на свете не существует само по себе, и «голый» квант в том числе.
Теперь мы подходим к самому трудному. Мы видим, что каждая микрочастица — это сложная корпускулярно-волновая структура. Ее плотность и состав зависят от заряда и других характеристик. Поэтому у одного состояния частицы одна масса, у другого — другая. Возникает разница и в силе взаимодействия. Состояния частицы «расщепляются» по массе и взаимодействию. Одни состояния становятся очень легкими, другие — тяжелыми, и исходное взаимодействие «голой» (абстракция!) частицы распадается на три — на слабое, электромагнитное и сильное.
Можно сказать, что в своих различных состояниях квант универсального «склеивающего» поля носит «шубы» различного покроя. В одних случаях «шуба» очень тяжелая, и тогда облачившийся в нее квант переносит взаимодействие лишь на ультрамалые расстояния. Далеко от центра частицы такие кванты почти не встречаются, и связанное с ними взаимодействие проявляется там очень слабо. В других случаях кванты набрасывают па себя легкую «шубу», и тогда они способны участвовать во взаимодействии на больших расстояниях.
Влияние фона спонтанно рождающихся частиц может быть настолько сильным, что на энергию связи и различные компенсирующие эффекты уходит целиком вся масса «голого» кванта. Надев «шубу», он становится «бестелесной» частицей с нулевой массой. Так возникает фотон и связанные с ним дальнодействующие электромагнитные силы.
Как не вспомнить здесь Корнея Чуковского, у которого «волки от испуга скушали друг друга», или известную шутку о том, как змея сама себя проглотила!
Почему так происходит — это сложный вопрос. Даже для специалистов-теоретиков здесь еще не все ясно. Можно только сказать, что в теории Салама и Пати для этого требуется, чтобы экранирующие облака кварков содержали шесть частиц, каждая из которых, в свою очередь, окутана облаком виртуальных частиц, состоящих из тех же частиц и... пар кварков и антикварков.
И опять, только на более глубоком «ультраэлементарном» уровне, мы приходим к самосогласованной, «зашнурованной» системе частиц, когда любая из них содержит в себе все сорта частиц, в том числе и себя самое. Складывается впечатление, что в этом проявляется какая-то общая закономерность, свойственная микромиру.
Что касается шести частиц, из которых сшита «шуба» кварка, то три из них — многокомпонентные глюоны. Из них «склеен» и фотон. В теории Салама и Пати фотон — не самостоятельная частица, а сложное «наложение», суперпозиция нескольких нейтральных состояний глюонов. Весьма неожиданный вывод! Три другие частицы в «шубе» кварка называются хиггсонами — по имени английского физика Хиггса, который первым начал разрабатывать теорию таких частиц. Это уж совсем необычные объекты даже для притерпевшихся ко всему теоретиков. От хиггсонов зависят свойства вакуума.
Оказывается, и вакуум, то есть, по нашим традиционным представлениям, ничто, пустота, может пребывать и различных состояниях, подобно тому как, скажем, углерод может быть в состоянии графита или в состоянии алмаза. Но как же это, ведь вакуум — это «чистое пространство»? Обстоятельный ответ на этот вопрос увел бы нас далеко в квантовую теорию поля — один из самых сложных разделов современной физики. Сейчас нам важно просто знать, что между состояниями вакуума нет переходов; во всяком случае, мы не знаем, как они выглядят, но знаем, что любое из этих состояний может служить основой Вселенной. А то или иное состояние вакуума как раз и определяют поля частиц Хиггса.
Мы не знаем пока ни массы, ни других свойств этих частиц — все это зависит от варианта пока еще не завершенной и развивающейся теории. Даже число хиггсонов изменяется от одного варианта теории к другому. Что требуется обязательно, так это то, чтобы эти частицы могли взаимодействовать между собой напрямую — без посредничества частиц других типов. Такое «самодействие» и образует основной «уровень мира»—его вакуум. Физикам это напоминает прозрачный эфемерный студень неодинаковой густоты.
Читать дальшеИнтервал:
Закладка: