Игорь Джавадов - Понятная физика
- Название:Понятная физика
- Автор:
- Жанр:
- Издательство:Написано пером
- Год:2014
- Город:Санкт-Петербург
- ISBN:978-5-00071-127-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Игорь Джавадов - Понятная физика краткое содержание
В книге, которую Вы держите, о физике рассказано по-новому. Новый подход, который можно назвать энергетическим, избегает проблем обычного преподавания физики. В классическом преподавании физики видны две проблемы. Во-первых, сложилась вековая традиция преподавать физику не как систему современных знаний о различных видах энергии, а как историю отдельных наблюдений и открытий, не всегда связанных между собой. Вторая проблема вытекает из первой – избыточность терминов. Взять хотя бы электричество. Электричество изучали Ампер, Фарадей, Ом и другие выдающиеся учёные. Вместе с их открытиями в физику вошли такие понятия как электродвижущая сила, разность потенциалов, напряжение и другие авторские термины. Разумеется, мы должны чтить вклад гениев в науку. Но с точки зрения современной физики речь идёт об одной и той же величине, измеряемой в вольтах. Для измерения указанных величин не нужны три разных прибора, достаточно одного вольтметра.
Почему современные авторы до сих пор делают вид, что школьник XXI века не смотрит телевизор, не знает компьютер? Раздел «Электричество» традиционно начинают с рассказа о древних греках, которые полировали янтарь тряпочкой и получали при этом электрические искры. Да, сто лет назад это было новостью для рабочего, принятого без экзаменов на рабфак. Но это неинтересно современному школьнику, который играет на электрогитаре и сам собирает усилитель.
Предлагаемый курс физики основан на понятии энергии, так как главной задачей физики является поиск новых видов энергии. Все согласны, что энергия не вектор. Значит, при выводе уравнений можно обойтись без векторной алгебры. Это делает физику более понятной, так как обычная алгебра намного проще векторной.
Понятная физика - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В качестве источника энергии накачки Мейман использовал мощную импульсную ксеноновую лампу, изготовленную в виде трубки, завитой в спираль. Кристалл рубина в виде цилиндрика размером с карандаш закрепили внутри спирали. Зеркала для фотонов напылили на торцы кристалла. В одном из зеркал оставили окошечко для выходного луча. Лампу обмотали фольгой для лучшего отражения света внутрь. Опыт начался.
После мощнейшей вспышки лампы практически все валентные электроны атомов хрома, поглотив фотоны с длиной волны 694 нм (красный свет), перешли в метастабильное состояние, где были заперты оболочками алюминия на период времени 10 -3с. Но, согласно принципам квантовой теории, как минимум один возбужденный электрон почти сразу (через 10 -8с) должен был просочиться через электронный барьер и вернуться на нижний уровень. При этом атом хрома должен излучить фотон красного цвета, который начнёт лавинообразный процесс генерации излучения. Всё так и случилось. Уже через 10 -4с после момента вспышки все метастабильные электроны вынужденно излучили мириады фотонов и вернулись в исходное состояние. Фотоны, концентрируясь, метались вдоль оси кристалла между зеркалами, пока не сжались в сверхтонкий луч, который вышел через окно на торце рубина и прожёг дырку в мишени. Весь процесс генерации лазерного монохромного луча занял меньше одной миллисекунды. Успех был очевиден. В дальнейшем Мейман организовал коммерческое производство лазеров и стал состоятельным человеком.
Первый лазер имел небольшую мощность, всего несколько ватт. В настоящее время изобретены другие лазеры, в тысячи раз мощнее. В качестве рабочей среды в них используют кристаллы, органические жидкости и даже газы. Новые лазеры применяются для резки металла, керамики, в хирургической практике. В печати иногда появляются сообщения о боевых лазерах, но эти проекты пока находятся на стадии опытных разработок. Проблема в том, что для сбивания ракеты требуется лазерный луч с мощностью не менее 100 кВт. Это значит, что для надежной работы боевого лазера нужен генератор энергии с мощностью порядка 10 МВт. Такие генераторы имеются, но они так громоздки, что вся лазерная система пока не помещается ни в самолете, ни на танке.
§ 59. Отвечая на вероятные вопросы
Вероятны по меньшей мере два вопроса: почему нет главы о тепловой энергии и на каком основании автор позволяет себе усреднять данные, чтобы получить результат?
По первому вопросу напомним, что классическая те ория тепла (термодинамика) основана на уравнении PV = RT (59.1), где P – давление в тепловой машине, V – рабочий объем машины, T – рабочая температура машины, R – переходный коэффициент, измеряется в джоулях на градус. Учитывая, что давление измеряют в Н/м 2, а объём – в м 3, легко показать, что размерность [PV] = [Н/м 2* м 3] = [Н*м] = [Дж]. Таким образом, левая часть уравнения (59.1), которая характеризует тепловую машину, имеет размерность энергии. Это значит, что основатели тепловой теории, применив энергетический подход, получили прекрасный результат, учитывая разнообразие созданных тепловых машин, от мопедов до космических ракет. В принципе, нам к этому добавить нечего.
По второму вопросу ответ прост: на основании теоремы о среднем. Заметим, цель любых расчётов – получить число. В высшей математике этим числом является определённый интеграл. Для его вычисления принято сначала дифференцировать, затем интегрировать, искать пределы интегрирования, подставлять в формулу и т. д. Это долго и сложно. С другой стороны, известно, что определённый интеграл численно равен площади под графиком функции. Эта площадь равна произведению основания на среднюю высоту, в этом суть теоремы о среднем. А средняя высота равна половине суммы наибольшего и наименьшего значения. Элементарная геометрия понятнее высшей алгебры. Ведь наш курс называется «Понятная физика».
И.Д. Джавадов, e-mail автора имеется в редакции издательстваИнтервал:
Закладка: