Eduardo Perez - Вселенная погибнет от холода. Больцман. Термодинамика и энтропия.
- Название:Вселенная погибнет от холода. Больцман. Термодинамика и энтропия.
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Eduardo Perez - Вселенная погибнет от холода. Больцман. Термодинамика и энтропия. краткое содержание
Людвиг Больцман - одна из главных фигур в современной физике. Развив активную деятельность в Вене конца XIX века, он произвел революцию в изучении материи, включив в него вероятность, и всеми силами отстаивал существование атомов в то время, когда многие философы и даже влиятельные ученые отрицали его. Несмотря на то что обновленное ученым понятие энтропии и основывающееся на нем начало термодинамики заложили основы квантовой и релятивистской революции в последующем веке, категоричные взгляды Больцмана не всегда встречали поддержку коллег, и это непонимание, возможно, было причиной его трагического самоубийства.
Вселенная погибнет от холода. Больцман. Термодинамика и энтропия. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Больцман воспользовался этой идеей, чтобы доказать: любой изолированный газ рано или поздно достигает гауссова распределения (в чем потерпел поражение Максвелл), и после его достижения других изменений больше не происходит. Он показал, что если энергия системы постоянна, постоянно и распределение вероятностей, и что при большом числе частиц это распределение окажется распределением Максвелла.
Он не только смог воспроизвести результат своего предшественника, но и предоставил гораздо более строгое и общее обоснование. Кроме того, он наметил контуры своей последующей статьи 1877 года, в которой полностью принял метод рассмотрения газа, положив начало статистической физике.
Действительные числа состоят из суммы множеств рациональных и иррациональных чисел. Первые числа — те, что можно выразить в виде частного между двумя целыми числами; вторые нельзя выразить таким образом. Примеры рациональных чисел — 2,5/7 или 2,35; а π, е или √2 — иррациональные числа. Иррациональные числа в бесконечное число раз изобильнее, чем рациональные. В самом деле между двумя любыми действительными числами существует бесконечное число иррациональных чисел. Чтобы убедиться в этом свойстве, достаточно сосредоточиться на их десятичном выражении. Возьмем два очень близких числа, таких как 1,00000000250 и 1,00000000251. Если добавить произвольный набор нулей и единиц после 5, получается бесконечное число сочетаний (поскольку существует бесконечное число знаков после запятой) чисел, имеющих значение между двумя предыдущими. Какой бы маленькой ни была разница, их всегда будет бесконечное число, поскольку бесконечность минус конечное число остается бесконечностью. При заданном конечном времени невозможно, чтобы молекула прошла через все возможные состояния энергии, если она способна принимать любые действительные значения. Единственное, в чем можно быть уверенными, — траектории будут "плотными", и с математической точки зрения это означает, что они будут проходить произвольно близко к любому числу.
Но в выводе Больцмана наблюдалась одна проблема, и состояла она в использовании того, что позже получило название "эргодической гипотезы". Речь о допущении, что при достаточном времени молекула пройдет через все возможные значения энергии, что необходимо для применения теории вероятностей в строгом виде. Предположим, что некая молекула находится в состоянии покоя в некий момент; каждый раз, когда она будет подвергаться столкновению, ее кинетическая энергия будет изменена и примет новое произвольное значение; если подождать достаточно времени, кажется логичным предположить, что молекула пройдет через все возможные значения энергии.
Однако действительные числа (рациональные и иррациональные) обладают свойствами, о которых Больцман не знал и которые противоречат его гипотезе: между двумя любыми числами существует бесконечное число других действительных чисел. Итак, даже если в нашем распоряжении будет бесконечное время, ничто не гарантирует, что произвольно меняющееся значение повторится, поскольку бесконечность действительных чисел имеет больший порядок. Если вновь обратиться к газу Больцмана, то число возможных состояний энергии бесконечно больше, чем число изменений скоростей, даже если в нашем распоряжении есть бесконечное время.
Больцман сомневался в своем предположении и старался нс использовать его в большинстве работ; в статье 1872 года он нашел изобретательный способ избежать его, благодаря чему на тридцать лет приблизился к квантовой механике.
Удача, которая сопутствовала ему с момента поступления в Венский университет в 1863 году, продолжала улыбаться и после получения права на преподавание. Его слава распространялась с момента публикации статьи 1868 года, кроме того, его поддерживал Стефан. В 1869 году освободилась кафедра математической физики в Грацском университете, очень престижном в ту пору. Кафедру экспериментальной физики тогда занимал Август Теплер (1836-1912), который был знаком с работой Больцмана и высоко ее оценивал. Несмотря на то что имелись два других кандидата на должность, шансы которых сперва были выше, чем у Больцмана, благодаря давлению Стефана и Теплера кафедру в итоге получил он.
В Граце Больцман оправдал надежды. Он сдружился с Теллером, физиком-экспериментатором, энтузиазм которого в науке соответствовал его собственному. Они оба работали в новом здании (Больцман позже называл его "маленьким Эрдбергом") и даже совместно подписывали статьи. Это был один из самых плодотворных периодов Людвига.
Университет был доволен его отдачей и поддержал ученого значительной прибавкой к жалованью и постоянными разрешениями на посещение других исследовательских центров. Больцману они пошли на пользу. В 1871-м он съездил в Гейдельберг, где познакомился с Густавом Кирхгофом (1824-1887) и Робертом Бунзеном (1811-1899); позже он отправился в Берлин, где подружился с Германом фон Гельмгольцем (1821-1894), которого потом долгие годы считал единственным, кто его понимал.
В Гейдельберге он произвел большое впечатление. Математик Лео Кёнигсбергер (1837-1921), один из преподавателей университета, в автобиографии рассказывает, что Больцман, присутствовавший на одном из его семинаров, с удивительной легкостью решил задачу, когда никто другой не мог найти ее решение. Кёнигсбергер поговорил с Больцманом и предложил ему навестить Кирхгофа, который тогда считался одним из главных интеллектуалов Германии, поскольку был убежден, что эти двое хорошо поладят. Больцман не заставил себя упрашивать, запросто предстал перед Кирхгофом и, едва увидев его, выпалил, что обнаружил ошибку в одной из его статей. Немец рассердился, но был вынужден признать, что Больцман прав, и это стало началом многолетней дружбы.
Через год он нанес визит Гельмгольцу в Берлине и нашел в нем того, кто не только был способен понять его математические выкладки, но и исследователя, с кем он мог обсудить их как с равным. Больцман, всегда любивший научные споры, ощутил огромное удовлетворение от этой "находки". Однако Гельмгольц был чрезвычайно холодным и закрытым человеком, с которым Больцман никогда не чувствовал себя абсолютно комфортно, не мог вести себя с ним естественно, считая поведение немцев слишком натянутым. Некоторые биографы объясняют холодностью Гельмгольца отказ Больцмана от кафедры математики в Берлинском университете, что произошло спустя несколько лет. Этот эпизод поверг австрийца в глубокую депрессию, от которой он так и не оправился.
Сравнивая поведение немцев с тем, к чему он привык в Эрдберге, Больцман комментировал: "Я тогда не догадывался, что мне как ученику не следовало выбирать (...) такой тон. Когда в ходе своего последующего визита в Берлин я неосмотрительно воспользовался им в первый же день, одного взгляда Гельмгольца было достаточно, чтобы мне это стало ясно".
Читать дальшеИнтервал:
Закладка: