Antonio Hernandez-Fernandez - В делении сила. Ферми. Ядерная энергия.
- Название:В делении сила. Ферми. Ядерная энергия.
- Автор:
- Жанр:
- Издательство:Де Агостини
- Год:2015
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Antonio Hernandez-Fernandez - В делении сила. Ферми. Ядерная энергия. краткое содержание
Энрико Ферми, один из главных ученых XX века, произвел революцию в физике первой половины столетия, внеся вклад в развитие таких дисциплин, как статистическая механика, теория квантов и ядерная физика. Ученый принял активное участие в создании первого ядерного реактора, что спустя несколько лет привело к появлению атомной бомбы, навсегда изменившей ход истории. Он был необыкновенным физиком, опередившим свое время, прообразом современного ученого, который вместо того, чтобы замыкаться в своей гениальности, окружал себя лучшими из лучших и работал в команде. Он запомнился своему поколению не только как великий исследователь, но и как превосходный педагог, взрастивший нескольких будущих лауреатов Нобелевской премии.
В делении сила. Ферми. Ядерная энергия. - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Сначала ни плутоний, ни работы Ферми не были в числе приоритетов американского правительства. К счастью, ученый нашел в Комптоне искреннего сторонника; дружба с семьей Юри, которая приняла Ферми в Колумбийском университете и ввела его с женой в местное общество, а также контакты с группой Лоуренса помогли ученому собрать воедино кусочки атомной мозаики. В Колумбийском университете Ферми поставил источник нейтронов радия и бериллия в диффузорное устройство, содержащее графит, оксид урана и другие материалы, такие как сталь, чтобы наблюдать за особенностями размножения нейтронов. Коэффициент k ∞показывает количество тепловых нейтронов, которые переходят из одной реакции к другой, поэтому теоретически для непрерывной цепной реакции он должен иметь значение k ∞≥ 1.
В идеальных условиях для атомного реактора:
— если k ∞= 1, возникают критические условия, то есть самоподдерживающаяся цепная реакция (как на современных атомных станциях);
— если k ∞< 1, возникают подкритические условия, и ядерный реактор остановится;
— если k ∞> 1, возникают надкритические условия, которые могут привести к взрыву.
Обычно коэффициент размножения к. определяют как произведение четырех величин
k ∞= η · f · ε · р, где:
— η — коэффициент размножения, который показывает количество нейтронов, полученных в среднем на каждый тепловой нейтрон, захваченный ядерным топливом (обычно ураном-235 и -238). В случае с природным ураном он равен примерно 1,3;
— f — коэффициент использования тепловых нейтронов, который показывает вероятность того, что захват нейтронов произойдет в замедлителе или в структурных элементах, а не в топливе (уране). Обычно имеет значение 0,9;
— ε — коэффициент быстрого деления, который показывает вероятность того, что быстрые нейтроны спровоцируют деление. В реакторах с ураном в качестве топлива это привело бы, например, к делению урана-238; в этом случае значение коэффициента было бы равно 1,03;
— р — показывает вероятность того, что нейтроны избегут резонансного захвата. С графитом в качестве замедлителя его значение равно 0,9.
В идеальном случае при k ∞= 1 произойдет самоподдерживающаяся реакция без использования внешнего источника нейтронов. В реальных системах обычно коэффициент размножения нейтронов k efопределяется как произведение бесконечного коэффициента размножения k ∞идеальной системы на вероятность Р того, что нейтрон ускользнет от системы размножения реактора:
k ef= P · k ∞
Это значение коэффициента, которое учитывает потерю нейтронов в реакторе, подразумевает, что на практике можно иметь k ∞> 1 и сохранять подкритические условия. Критическая масса — это количество ядерного топлива, которое при определенных условиях делает цепную реакцию самоподдерживающейся. Критическая масса зависит от геометрии реактора, а также от состава и уровня чистоты ядерного топлива. Если потеря нейтронов сокращается, то критическая масса может быть уменьшена. С другой стороны, нейтроны характеризуются временной постоянной т, которая соответствует времени, необходимому для торможения (примерно 10 -6с), и времени рассеяния перед поглощением (порядка 10 -3с). Таким образом, если N 0— изначальное количество нейтронов, то с течением времени их количество будет соответствовать выражению, зависящему от k ∞.
N(t) = N 0· e (k∞ -1)t/τ.
Поэтому если k ∞= 1, то появляются критические условия и количество нейтронов N не меняется (N = N 0). При k ∞< 1 оно экспоненциально уменьшается, а при k ∞> 1 мы имеем надкритическое состояние, при котором число нейтронов экспоненциально увеличивается и реакция выходит из-под контроля.
В настоящих реакторах обычно сначала создается подкритическое состояние и используются замедленные нейтроны и аварийная регулирующая кассета для того, чтобы достигнуть критического — рабочего — состояния.
Атака на Перл-Харбор вызвала огромный резонанс в американском обществе. К иностранным ученым, в особенности бежавшим из вражеских стран, стали относиться с большим подозрением: любой из них мог оказаться шпионом. Руководителями групп по исследованию урана назначались только американские граждане. В таких условиях в Чикаго была создана «Металлургическая лаборатория» во главе с Артуром Комптоном. Ее целью было получение плутония при помощи ядерных реакций на основе урана и с графитом в качестве замедлителя. Название проекта было призвано сохранить в тайне истинную его цель: в лаборатории почти не занимались металлургией, если не считать саму конструкцию ядерного реактора.
За короткое время Ферми завоевал в Чикаго всеобщее уважение, но когда в конце декабря 1941 года он первый раз приехал туда из Нью-Йорка, ему пришлось предупредить власти, взять у них разрешение на отъезд и сообщить цель и длительность поездки. Секретарь отделения физики в Колумбийском университете некоторое время исследовал досье ученого, а в апреле 1942 года Ферми окончательно переселился в Чикаго. Лаура с детьми ждали июня, когда заканчивалась учеба в школе. Для семьи Ферми это были сложные месяцы: они еще не были американскими гражданами и к тому же приехали из вражеской Италии, что усложняло каждый их шаг, в частности связанный с переездами.
В 1941 году Ферми и Силард не без сложностей получили большие количества чистого графита и чистых минералов урана. Силард сам вел переговоры с американскими и канадскими компаниями, чтобы получить достаточное количество качественного материала, а Ферми проектировал уран-графитовый ядерный реактор, как он сам его назвал, пытаясь найти наилучшую геометрическую форму для обоих компонентов и разместить их так, чтобы получить самоподдерживающуюся цепную реакцию. Ученые знали, что чем больше размеры реактора, тем лучше протекает диффузия нейтронов и возрастает коэффициент размножения k ef.
К сентябрю того же года лаборатория располагала шестью тоннами оксида урана (U 3O8) и 30 тоннами графитовых блоков. Учитывая размеры и вес материалов, Пеграму пришлось найти другое помещение для их хранения. Так была построена Шермерхорн Рум — квадратная камера со сторонами длиной 2,45 м и высотой 3,35 м с блоками графита и урана, вставленными в герметичные контейнеры, с источником нейтронов радия и бериллия высокой интенсивности у основания. Из-за огромных размеров этой «поленницы» Ферми в шутку говорил, что впервые ему удалось совместить свою страсть к физике и горам и «карабкаться по собственным устройствам». Нейтроны можно было обнаружить с помощью панелей из индия, распределенных по камере. Так появился первый экспоненциальный реактор Ферми. По расчетам ученого, коэффициент размножения нейтронов был равен 0,87, но результаты оказались на 13% меньше необходимого минимума для получения самоподдерживающейся цепной реакции.
Читать дальшеИнтервал:
Закладка: