Нил Тайсон - История всего
- Название:История всего
- Автор:
- Жанр:
- Издательство:Питер
- Год:2016
- Город:Санкт-Петербург
- ISBN:978-5-496-01745-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Нил Тайсон - История всего краткое содержание
Наше происхождение началось не на Земле, а, на самом деле, в космосе. Основываясь на научных открытиях и исследованиях, где пересекаются несколько наук — геология, биология, астрофизика и космология, — вы узнаете, как сформировались наши знания о космосе. В этой книге Нил Деграсс Тайсон и Дональд Голдсмит отправят вас в космический тур, где вы узнаете о рождении галактики, исследованиях Марса, об открытии воды на одной из лун Юпитера и многое другое.
История всего - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Мы описали основные свойства водорода и гелия; лития, бериллия и бора; углерода, азота и кислорода; алюминия, титана и железа; таким образом, мы изучили практически все ключевые элементы, благодаря которым космос и жизнь на Земле сегодня существуют.
Ради общекосмического интереса давайте быстро пробежимся и по гораздо более странным участникам периодической таблицы элементов. Вам почти наверняка никогда не доведется владеть сколько-нибудь серьезными объемами этих элементов, но для ученых они не только яркие и загадочные всплески на зеркальной глади природных химических щедрот, но и невероятно ловкие в определенных условиях помощники. Возьмем, к примеру, мягкий металл галлий (31 протон в ядре). Температура плавления галлия настолько мала, что ему хватит тепла человеческого тела, чтобы расплавиться прямо у вас на ладони. Галлий также развлекает астрофизиков, исполняя роль активного ингредиента вещества хлорида галлия — вариации на тему столовой соли (хлорида натрия), что принимает ценное участие в экспериментах по обнаружению нейтрино. Чтобы зафиксировать ускользающие от них нейтрино, астрофизики берут стотонный бак жидкого хлорида галлия и помещают его глубоко под землей (нивелируя воздействие других менее проникающих частиц), после чего внимательно наблюдают за ним, чтобы отследить результаты любых столкновений между нейтрино и ядрами галлия. Такие столкновения ведут к образованию ядер германия по 32 протона каждое. Любое преобразование галлия в германий сопровождается выделением фотонов рентгеновского излучения, которое можно обнаружить и измерить каждый раз, когда на ядро приходится удар. С помощью подобных «нейтриновых телескопов» из хлорида галлия астрофизики разрешили загадку, которую они называли проблемой солнечных нейтрино. Она заключалась в том, что по ранее необъясненным причинам предыдущие поколения детекторов нейтрино обнаруживали их меньше, чем предполагала теория термоядерного синтеза в звездном ядре Солнца.
Каждое ядро элемента технеция (атомное число 43) является радиоактивным, распадаясь за несколько мгновений за несколько миллионов лет на другие типы ядер. Ничего удивительного в том, что на Земле обнаружить технеций в природе нельзя — разве что в ускорителях частиц, где его можно изготовить на заказ. В силу обстоятельств, которые пока не поддаются нашему пониманию, технеций обитает в атмосферах определенного ряда красных гигантов. Как было отмечено в предыдущей главе, это ни за что не взволновало бы астрофизиков, если бы не период полураспада технеция 2 миллиона лет; а это намного меньше, чем предполагаемая продолжительность жизни тех звезд, у которых он был обнаружен. Это доказывает, что звезды не могли сформироваться с готовыми запасами технеция, ведь, если бы это было так, никакого технеция в них уже не осталось бы. Астрофизики также не знают такого механизма, который позволил бы звезде синтезировать технеций в своем ядре и затем доставить его на свою поверхность, где они и имеют честь его наблюдать. Причины наличия технеция в атмосфере таких звезд до сих пор не разгаданы, из-за чего в данной области иногда рождаются весьма экзотические теории, ни одна из которых, впрочем, пока не получила единодушного одобрения в сообществе астрофизиков.
Наряду с осмием и платиной иридий является одним из трех самых плотных элементов периодической таблицы: два кубических фута [46] 2 куб. фута = 0,057 куб. м.
иридия (атомное число 77) весят как один хороший «Бьюик», и поэтому из него получаются лучшие пресс-папье в мире — офисные сквозняки и напольные вентиляторы им нипочем. Иридий также представляет собой самое веское в мире неопровержимое доказательство прошлых событий в истории Земли — вроде дымящегося пистолета в руке стрелявшего: тонкий слой материала с высоким содержанием иридия покрывает всемирный геологический слой на знаменитой границе К-Т, которая сформировалась около 65 миллионов лет назад. По мнению большинства биологов, это не просто совпадение, что именно в ту эпоху все виды наземных существ размером с хлебницу и крупнее, включая легендарных динозавров, вымерли. Иридий на поверхности Земли встречается редко, зато в десять раз чаще его можно обнаружить на металлических астероидах. Какой бы теории о вымирании всех динозавров планеты вы ни придерживались ранее, смертоносный астероид диаметром 10 миль, прилетевший к нам из космоса и способный поднять на воздух плотную светонепроницаемую пелену всевозможного мусора, который несколько месяцев спустя прольется осколочным дождем обратно на Землю, больше не кажется таким уж невероятным вариантом.
Неясно, как к этому отнесся бы сам Альберт Эйнштейн, но, когда в продуктах взрыва первой пробной водородной бомбы в Тихоокеанском регионе в ноябре 1952 года физики обнаружили ранее неизвестный им химический элемент, они назвали его эйнштейнием в честь великого ученого. Хотя что-то вроде «армагеддоний» было бы более уместно.
В то время как гелий получил свое название непосредственно от Солнца, еще десять элементов периодической таблицы позаимствовали свои названия у объектов, вокруг Солнца вращающихся.
Фосфором, что с греческого переводится как «несущий свет», в древности называлась планета Венера, появлявшаяся в рассветном небе незадолго до восхода Солнца.
Селен отсылает нас к «селене» — греческой «луне»; он был назван так потому, что всегда встречается в природе в обнимку с другим элементом — теллурием, в свою очередь получившим название в честь Земли (на основе латинского слова tellus).
1 января 1801 года, в первый день XIX века, итальянский астроном Джузеппе Пьяцци открыл новую планету, вращавшуюся вокруг Солнца и расположенную на подозрительно большом пустом участке неба между Марсом и Юпитером. Не отступая от традиции, которая предлагает нарекать планеты в честь древнеримских богов, Пьяцци назвал этот объект Церерой в честь богини урожая (что затем также легло в основу английского слова cereal, означающего «злак»). Научное сообщество настолько взволновало открытие Пьяцци, что следующий же новый обнаруженный химический элемент был назван церием. Два года спустя была обнаружена еще одна планета — примерно на том же расстоянии от Солнца, что и Церера. Ее назвали Палладой — в честь богини мудрости Афины Паллады, и, как и в случае с церием, следующий новый элемент в периодической таблице получил в честь нее название палладий. Кружок интересов по придумыванию названий закрылся несколько десятилетий спустя, когда в одном и том же регионе было открыто еще несколько дюжин подобных планет. Более подробный анализ дал понять, что эти объекты были во много раз меньшего размера, чем самые маленькие из известных планет. В Солнечной системе было обнаружено целое поколение новых объектов, состоявших из маленьких и неровных кусков камня и металла. Церера и Паллада оказались не планетами, а астероидами, в размере не превышающими несколько сотен миль от края до края. Они обитают в поясе астероидов, который, как мы уже знаем сегодня, состоит из миллионов объектов: астрологи тщательно внесли их все в каталоги (более 15 тысяч!) и переписали, дав им порядковые номерные названия — это, конечно, побольше, чем количество элементов в периодической таблице.
Читать дальшеИнтервал:
Закладка: