Нил Тайсон - История всего
- Название:История всего
- Автор:
- Жанр:
- Издательство:Питер
- Год:2016
- Город:Санкт-Петербург
- ISBN:978-5-496-01745-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Нил Тайсон - История всего краткое содержание
Наше происхождение началось не на Земле, а, на самом деле, в космосе. Основываясь на научных открытиях и исследованиях, где пересекаются несколько наук — геология, биология, астрофизика и космология, — вы узнаете, как сформировались наши знания о космосе. В этой книге Нил Деграсс Тайсон и Дональд Голдсмит отправят вас в космический тур, где вы узнаете о рождении галактики, исследованиях Марса, об открытии воды на одной из лун Юпитера и многое другое.
История всего - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Какая чудесная, полная надежд и пророчеств сказка могла бы из всего этого получиться! Жизнь не просто может потерять статус редкого и ценного явления вселенского значения — она может оказаться явлением столь же распространенным, что и сами планеты. Нам остается всего-то ничего — обнаружить ее.
Глава 16
Поиски жизни в Солнечной системе
Вероятность существования жизни за пределами Земли привела к образованию новых профессиональных областей, в которых пока занято довольно ограниченное количество людей, но которые в будущем могут оказаться очень перспективными. Астробиологи, они же биоастрономы, занимаются вопросами жизни за пределами Земли, какие бы гипотетические формы эта жизнь ни принимала. Сегодня астробиологи пока могут лишь рассуждать и выдвигать теории об инопланетной жизни воссоздавать в лабораториях инопланетные условия, в которые они затем помещают земные формы жизни, чтобы проверить, смогут ли они выжить в трудных и непривычных им ситуациях. В искусственно воссозданные инопланетные условия можно поместить и сочетания неодушевленных молекул, пытаясь разыграть свою версию классического эксперимента Миллера — Юри навести глянец на исследования Вехтерсхойзера. Это сочетание размышлений и экспериментов привело нас к некоторым общепринятым заключениям, которые, исходя из того, насколько точно они описывают реальную Вселенную, имеют очень большое значение. Сегодня астробиологи считают, что для существования жизни во Вселенной необходимо следующее:
1) источник энергии;
2) определенный атом, который допускает существование сложных структур, 3) жидкий растворитель, в котором молекулы могут плавать и взаимодействовать друг с другом;
4) достаточный промежуток времени, за который жизнь может возникнуть и эволюционировать.
В этом коротком списке пункты 1 и 4 представляют собой довольно низкие барьеры преодоления первыми формами жизни. Каждая звезда в космосе является источником энергии, и все они, за исключением вопиющего 1 % таких звезд, сияют многие сотни миллионов и даже миллиарды лет подряд. Например, наше Солнце обеспечивает Землю бесперебойным запасом тепла и света на протяжении последних 5 миллиардов лет и продолжит делать это еще как минимум столько же. Далее, как мы теперь знаем, жизнь может существовать, прекрасно обходясь и без солнечного света, используя геотермальное тепло и химические реакции в качестве источника желанной энергии. Геотермальная энергия рождается частично за счет радиоактивной природы изотопов таких элементов, как калий, тор и уран, распад которых занимает миллиарды лет, а это уже сравнимо с жизненным циклом среднестатистической солнцеобразной звезды.
Жизнь на планете Земля удовлетворяет пункту 2, говорящему об атоме, способном создавать структуру: у нас есть углерод. Каждый атом углерода может прикрепляться к одному, двум, трем или четырем другим атомам одновременно, что делает его ключевым химическим элементом в структуре всей известной нам жизни. В отличие от углерода атомы того же водорода могут каждый прикрепляться лишь к одному другому атому, а атомы кислорода — максимум к двум. Из-за того что атомы углерода способны за раз соединяться с целой четверкой других атомов, они формируют «хребет» для всех наиболее простых молекул, из которых состоят живые организмы, а именно белков и сахаров.
Способность углерода создавать сложные молекулы сделала его одним из четырех самых распространенных в мире — и в представленных им формах жизни — элементов наряду с водородом, кислородом и азотом. Мы уже знаем, что, несмотря на то что из четырех самых широко представленных химических элементов земной коры только один — кислород — совпадает с этой четверкой «атомов жизни», вся эта четверка представлена в списке шести самых распространенных химических элементов в мире (куда также входят инертные газы гелий и неон). Данный факт может выступать в поддержку теории о том, что жизнь на Земле началась в звездах в некоторых объектах, по своему составу напоминающих звезды. В любом случае сам факт, что углерод представляет собой лишь незначительную долю в составе поверхности Земли, но столь важен в формировании структуры любого живого существа, служит совершенно явным доказательством того, сколь важна его роль в обеспечении жизни необходимой ей структурой.
Важен ли углерод для жизни во всей Вселенной? Как насчет кремния, который так часто всплывает в научно-фантастических романах в качестве базового структурного атома для различных экзотических форм внеземной жизни? Как и в случае с углеродом, атомы кремния могут одновременно соединяться с четырьмя другими атомами, однако природа образуемых кремнием связей такова, что его популярность в роли кандидата в создатели структурных основ для образования более сложных молекул несравнима с углеродом. Углерод формирует с другими атомами довольно слабые связи, поэтому, к примеру, пары атомов углерод-кислород, углерод-водород и углерод-углерод разбить довольно просто. Это позволяет основанным на углероде молекулам формировать все новые типы молекул, сталкиваясь и взаимодействуя друг с другом, без чего невозможно представить себе активный обмен веществ, обязательный любой формы жизни. В отличие от углерода, кремний формирует очень прочные связи со многими другими атомами, особенно с кислородом. Земная кора состоит преимущественно из силикатных — кремниевых — пород, образовавшихся в основном из атомов кремния и кислорода, соединенных друг с другом достаточно крепко для того, чтобы просуществовать незыблемо на протяжении миллионов лет. Эти соединения будет довольно трудно заставить поучаствовать в образовании новых типов молекул.
Различия в механике формирования углеродом и кремнием химических связей с другими атомами подсказывает нам, что мы с гораздо большей вероятностью обнаружим внеземные формы жизни, в основе которых будут лежать углеродные, а не кремниевые молекулярные хребты. Помимо этой парочки, остается лишь несколько довольно экзотических типов атомов, распространенных во Вселенной во много раз меньше, чем углерод и кремний, которые могли бы одновременно соединяться сразу с четырьмя другими атомами. Исключительно из статистических соображений вероятность того, что где-то существуют формы жизни, образованной с помощью, скажем, германия — таким же образом, как земная жизнь образовалась на основе углерода, — кажется весьма и весьма незначительной.
Пункт 3 говорит о том, что всем формам жизни необходим жидкий растворитель, в котором молекулы вещества могли бы плавать и взаимодействовать между собой. Здесь слово «растворитель» подчеркивает тот факт, что подобная ситуация, в которой молекулы могли бы «плавать и взаимодействовать», возможна именно в «растворе». Обычная жидкость, как бы сильно она ни была насыщена молекулами, никак не ограничивает подвижность этих самых молекул в своем составе. С другой стороны, в твердых веществах атомы и молекулы имеют свое четко определенное место. Они все еще могут сталкиваться и взаимодействовать, но это происходит в разы медленнее, чем в составе жидкостей. Если взять газ, то там молекулы перемещаются еще более свободно, чем в жидкостях, и могут сталкиваться друг с другом с еще меньшими препятствиями; но их столкновения и взаимодействия происходят по факту в разы реже, чем в жидкостях, потому что плотность газа, как правило, минимум в 1000 раз ниже плотности жидкости. «Если бы только нам хватало мира и времени», как однажды сказал Эндрю Марвел, мы, может, и обнаружили бы истоки жизни в газах, а не в жидкостях. В реальном космосе, которому всего-то 14 миллиардов лет, астробиологи не рассчитывают когда-нибудь обнаружить жизнь, возникшую внутри газовой среды. Нет — они ожидают, что вся внеземная жизнь, как и земная, полагалась, полагается и будет полагаться на резервуары жидкости, внутри которой с помощью сложных химических процессов разные типы молекул сталкиваются друг с другом и образуют все больше новых химических соединений.
Читать дальшеИнтервал:
Закладка: