Александр Филиппов - Многоликий солитон
- Название:Многоликий солитон
- Автор:
- Жанр:
- Издательство:Наука, гл. ред. физ.-мат. лит.
- Год:1990
- Город:Москва
- ISBN:5-02-014405-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Филиппов - Многоликий солитон краткое содержание
Одно из наиболее удивительных и красивых волновых явлений — образование уединенных волн, или солитонов, распространяющихся в виде импульсов неизменной формы и во многом подобных частицам. К солитонным явлениям относятся, например, волны цунами, нервные импульсы и др.
В новом издании (1-е изд. — 1985 г.) материал книги существенно переработан с учетом новейших достижений.
Для школьников старших классов, студентов, преподавателей.
Многоликий солитон - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Уже эти новые возможности начинают сильно менять характер работы физика-теоретика или математика. В первую очередь изменяется само понятие о том, что значит решить задачу. Если, скажем, мы хотим изучить движение двух грузиков, связанных пружинками, нам достаточно получить уравнение (5.1), а все остальное предоставить машине. С такой же легкостью ЭВМ разберется и с движением пяти, десяти или ста грузиков... Так что же, мы с вами понапрасну теряли время на задачи, с которыми лучше справится ЭВМ? Вовсе нет! Для нас грузики и пружины не были самоцелью. Они представляли собой простые механические модели гораздо более сложных физических систем. Кроме того, нас интересовали не движения отдельных грузиков, а качественное поведение системы в целом. Мы старались выявить такие закономерности в движениях грузиков, которые позволили бы нам получить ясную, легко охватываемую нашей интуицией, физическую картину всех явлений. Уяснив эту картину, мы смогли затем разобраться в гораздо более сложных вещах, к которым мы иначе и не смогли бы подступиться. Здесь работали наше воображение, интуиция и, если хотите, чувство качества, которых машины, увы, пока лишены.
Речь идет не столько о «пяти чувствах», сколько о личности человека, отражающей как историю всего человечества, так и неповторимые отдельные особенности индивидуальности. Но, казалось бы, наука — это коллективное творчество, и можно усомниться в том, играют ли такую уж большую роль сугубо личные качества в работе ученого. На это нет простого ответа, и в предыдущих главах много говорилось о сложном характере отношений между творческой личностью и творческим коллективом в науке. Она, безусловно, не могла бы существовать без коллективной работы многих ученых. Но наука быстро выродилась бы и в том случае, если бы в ней перестали появляться «одинокие охотники», люди, способные находить совершенно новые, оригинальные пути. Вспомните хотя бы о тех ученых, с идеями которых мы познакомились. Кстати, они сами много размышляли на эти темы. Вот, например, что говорил Максвелл о роли эмоций в научном исследовании:
«Есть люди, которые могут полностью понять любое выраженное в символической форме соотношение или закон как соотношение между абстрактными величинами... Другие получают большее удовлетворение, следуя за геометрическими формами, которые они чертят на бумаге или строят в пустом пространстве перед собой. Иные же не удовлетворяются до тех пор, пока не перенесутся в созданную ими обстановку со всеми своими физическими силами. Узнав, с какой скоростью проносится в пространстве планета, они испытывают от этого чувство восхитительного возбуждения. Вычисляя силы, с которыми притягивают друг друга небесные тела, они чувствуют, как напрягаются от усилия их собственные мышцы. Для этих людей слова «импульс», «энергия», «масса» не сводятся к абстрактным выражениям результатов научного исследования. Эти слова имеют для них глубокий смысл и волнуют их душу, как воспоминания детства».
Можно, конечно, вообразить, что машины будущего смогут в какой-то степени уподобиться людям первой или второй категории. Но чтобы они могли научиться воспринимать научные идеи так же эмоционально, как Максвелл (к «иным же», несомненно, относится он сам!), этого, пожалуй, не станет утверждать даже самый безоглядный пропагандист «искусственного интеллекта». Впрочем, оставим разговор о том, чего машины не могут, и вернемся к тому, чем они реально помогают нам уже сегодня. Отвлечемся пока от захватывающей перспективы создания «искусственного интеллекта», который сможет соперничать с человеком в научном творчестве, и посмотрим, как человек может плодотворно сотрудничать с ЭВМ.
Может ли человек «дружить» с ЭВМ
Вопрос этот сильно запоздал, ибо ответ на него слишком очевиден. Не только может, но эта «дружба» развивается столь бурно, что уже сейчас появились, например, физики-теоретики, которые буквально не могут жить без ЭВМ. Некоторые даже на время забросили свои физические задачи, чтобы вернуться к ним после того, как в общении с ЭВМ они добьются от нее лучшего понимания этих задач. Так что для некоторых это уже не «дружба», а настоящий серьезный «роман» с ЭВМ! Если машина — всего лишь добросовестный вычислитель, всего лишь честный исполнитель воли ее патрона, которого буднично называют «пользователем», то как понять эту страсть?
Дело, конечно, не только в том, что машина выполняет для нас расчеты, на которые не хватило бы никаких человеческих сил. Главное, она может подсказать нам совершенно новые возможности, заложенные в математических моделях физической реальности, и тем подтолкнуть нас к открытию новых фактов и к созданию новых идей. Машина сама не удивляется и не восхищается, но она может удивить и восхитить нас! Эта мысль была, несомненно, чужда даже наиболее проницательным ученым прошлого века. В своем описании аналитической машины Бэббеджа леди Лавлейс писала: «Аналитическая машина не претендует на то, чтобы создавать что-то действительно новое. Машина может выполнить все то, что мы умеем ей предписать». С этим был вполне согласен Бэббедж, и точно так же, очевидно, думали Максвелл и Кельвин.
Совсем иначе смотрели на эту проблему основатели теории современных ЭВМ Джон фон Нейман (1903—1957) и Алан Тьюринг (1912—1954) *). В своей знаменитой статье «может ли машина мыслить?» (1952 г.) Тьюринг, склонявшийся к положительному ответу на этот вопрос, писал: «...меня машины удивляют очень часто... Мнение, что машины не могут чем-либо удивить человека, основывается, как я полагаю, на одном заблуждении, которому в особенности подвержены математики и философы. Я имею в виду предположение о том, что коль скоро какой-то факт стал достоянием разума, тотчас же достоянием разума становятся все следствия из этого факта. Во многих случаях это предположение может оказаться весьма полезным, но слишком часто забывают, что оно ложно».
*) Эти математики не только разрабатывали теорию, но и непосредственно участвовали в строительстве первых в мире автоматических ЭВМ с хранимой программой, предлагая новые математические и инженерные идеи.
Такой же вопрос, только в более конкретной форме, ставит фон Нейман в 1946 г.: «Какие стороны чистой и прикладной математики можно развить, используя крупные автоматические вычислительные машины?» Ответ он дает очень точный. «Известные нам сегодня аналитические методы представляются непригодными для решения проблем, возникающих в связи с нелинейными дифференциальными уравнениями в частных производных, а в действительности — для решения практически всех видов нелинейных задач математики. Это в особенности ярко проявляется в динамике жидкости. В этой области были решены в аналитическом виде лишь самые простые задачи... Прогресс в математическом анализе сегодня застопорился практически по всему фронту нелинейных проблем... и лишь по-настоящему эффективные быстродействующие вычислительные устройства... могут дать нашей интуиции указания, необходимые для действительного прогресса во всех областях математики...»
Читать дальшеИнтервал:
Закладка: