LibKing » Книги » sci-phys » Владимир Внуков - Занимательная физика на войне

Владимир Внуков - Занимательная физика на войне

Тут можно читать онлайн Владимир Внуков - Занимательная физика на войне - бесплатно полную версию книги (целиком). Жанр: sci-phys, издательство Молодая гвардия, год 1930. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Владимир Внуков - Занимательная физика на войне
  • Название:
    Занимательная физика на войне
  • Автор:
  • Жанр:
  • Издательство:
    Молодая гвардия
  • Год:
    1930
  • ISBN:
    нет данных
  • Рейтинг:
    3.72/5. Голосов: 111
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Владимир Внуков - Занимательная физика на войне краткое содержание

Занимательная физика на войне - описание и краткое содержание, автор Владимир Внуков, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

«Занимательная» физика вообще должна читаться легко, а значит, пишется трудно, «занимательная» же военная физика дело совсем необычное, а потому особенно трудное. Автор рискует думать, что книжка все же заинтересует немалый круг читателей и в особенности юных читателей...

Занимательная физика на войне - читать онлайн бесплатно полную версию (весь текст целиком)

Занимательная физика на войне - читать книгу онлайн бесплатно, автор Владимир Внуков
Свет

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Тут, очевидно, дело не так просто. Камень, брошенный прямо вверх, т. е. под углом 90°, упадет на то же место, значит, дальность его полета — ноль. Камни, брошенные близко к этому углу, очевидно, далеко не полетят. Выходит, что есть какой-то угол бросания — больше 0°, но меньше 90°. Опыт и теория показывают, что таким углом в безвоздушном пространстве является угол, равный 45°. В воздухе наивыгоднейший угол броска получается несколько меньше, ок. 42–43°.

Итак, дальше упадет тот камень, который брошен с большей силой (а значит, и с большей скоростью) и направление броска которого ближе к 42–43°.

Проверьте это в поле, подобрав камни равного веса и, примерно, одинаковой формы, и вы убедитесь в правильности этого вывода. Это же правило вполне применимо к пулям и снарядам. Поэтому, чтобы дальше бросить пулю или снаряд, стараются сообщить им побольше начальную скорость, что достигается увеличением заряда пороха. Увеличивают также и угол бросания, но здесь чисто военные причины заставляют часто отказываться от наивыгоднейшего угла. Для примера отметим хотя бы необходимость пробить вертикальную стенку. Если снаряд будет брошен под большим углом, он упадет сверху и стенку не пробьет. А если его бросить «настильно», т. е. под малым углом, то при достаточной силе удара стенка окажется пробитой.

Интересно отметить, каких пределов достигла здесь военная техника. Очевидно, наивыгоднейший угол бросания изменить нельзя, поэтому тут как раньше, так и теперь у дальнобойных орудий, в зависимости от назначения их, стремятся лишь приблизиться к этому углу наклона. Что же касается силы броска, от которой зависит скорость полета снарядов, то с каждым годом техника дает нам новые достижения в этой области. Двадцать лет тому назад скорость полета снарядов не превышала 800 метров в секунду. Теперь же ряд орудий дает начальную скорость снарядов значительно больше 1 000 метров в секунду, и у некоторых образцов она достигает 1 500—1 700 метров в секунду! Чтобы понять как велики эти скорости, сравним их со скоростями других известных нам движений (рис. 11).

Фото

Рис. 11. В одну секунду проходят…


Однако не следует думать, что достижения здесь беспредельны. Уже сейчас для получения таких громадных скоростей в орудия кладут заряды пороха до 200 кг. Взрыв таких количеств пороха требует громадной прочности стволов, что достигается их утолщением.

Но опыт показал, что тут тоже есть предел, дальше которого утолщение ствола не повышает уже его прочность. Этим пока и ограничены дальнейшие увеличения скоростей полета снарядов, а значит, и дальности их броска.

Мешает ли воздух двигаться

При медленных движениях (пешеход, экипаж) присутствие воздуха почти незаметно, и влияние его на скорость движения тел ничтожно. При всяком же быстром движении (велосипед, поезд, автомобиль, аэроплан) воздух уже заметно тормозит движение, так как вокруг двигающегося тела образуются препятствующие передвижению тел вихри. Вопрос этот приобрел особенно большое значение с развитием авиации, и в настоящее время изучению его уделяют большое внимание ученые всех стран.

Проверить опытом влияние воздуха на движение тел совсем нетрудно. Дайте падать двум одинаковым кускам картона с одной высоты, но в разных положениях: один плашмя, другой ребром. Даже при небольшой высоте заметно будет, что картон ребром упадет скорее, чем плашмя.

Другой пример: бросьте лист бумаги. Далеко ли он упадет? Теперь сожмите лист в комочек и снова бросьте. Он упадет гораздо дальше. Влияние воздуха в обоих опытах очевидно и зависит от площади и формы двигающихся тел.

Насколько все это имеет значение на практике, можно видеть из следующих примеров.

Круглая шрапнельная пуля, брошенная с аэроплана вниз, сначала, как все падающие тела, двигается ускоренно[8], но в некоторый момент своего падения скорость ее перестанет возрастать, и она будет падать равномерно. Это наступит тогда, когда сила тяжести окажется равной силе сопротивления воздуха. Сила тяжести остается во все время падения пули постоянной, а сопротивление воздуха увеличивается с увеличением скорости движения пули. Поэтому настает такой момент, когда силы эти сравняются. В результате, круглая пуля, брошенная с любой высоты, доходит до земли с небольшой сравнительно скоростью и благодаря этому почти безвредна. Ударившись о мягкую шапку, пуля обычно не в состоянии пробить даже ее толщину.

Другое дело, если с аэроплана бросить острую стрелу. Так как стрела легко разрезает воздух, сопротивление его окажется ничтожным, и скорость стрелы у земли может дойти до нескольких сотен метров в секунду. Это делает стрелы, брошенные с аэроплана, очень опасными, так как они способны пробить насквозь десяток дюймовых досок, а попадая в человека, пробивают его от плеча до пятки и зарываются еще в землю на несколько сантиметров. Все сказанное указывает на один из способов борьбы с сопротивлением воздуха. Способ этот заключается в придании двигающимся телам «удобообтекаемой» формы. Опытом установлено, что такой формой при небольших скоростях является форма капли воды (рис. 12).

Фото

Рис. 12. Сопротивление воздуха двигающимся в нем телам одинаковой толщины (одного диаметра), но разной формы: А — пластинка; Б — шар; В — тело удобообтекаемой формы. Слева показана величина сопротивления воздуха каждому из этих тел.


Изготавливая все быстродвигающиеся предметы, теперь и стараются придать им удобообтекаемую форму. Кузов автомобиля и аэроплана, очертание пули, аэропланной бомбы и снаряда (рис. 13) — все это имеет особый смысл и предназначено для уменьшения сопротивления воздуха.

Фото

Рис. 13. Пули и снаряды раньше и теперь: 1) круглое ядро; 2) старая пуля; 3) современная пуля; 4) современные снаряды; 5) снаряды и пули, предполагаемые к введению в будущем; А — ведущий поясок на снарядах.


Последнее время задумали заострять снаряды и пули не только спереди, но и сзади (см. рис. 13), но к окончательным выводам еще не пришли ввиду сложности вопроса выбрасывания таких снарядов из орудий.

Насколько большое значение имеет всё же сопротивление воздуха для пуль и снарядов, несмотря на заостренную их форму, видно из рис. 14, где показаны линии полета, какие были бы в безвоздушном пространстве и какие получаются в воздухе.

Фото

Рис. 14. Как летит острая пуля в воздухе и как летела бы она в пустоте.


В особенности заметно влияние воздуха для легкой сравнительно пули.

Читать дальше
Свет

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Владимир Внуков читать все книги автора по порядку

Владимир Внуков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Занимательная физика на войне отзывы


Отзывы читателей о книге Занимательная физика на войне, автор: Владимир Внуков. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям


Прокомментировать
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав,
пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img