Стивен Вайнберг - Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы
- Название:Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы
- Автор:
- Жанр:
- Издательство:Едиториал УРСС
- Год:2004
- Город:Москва
- ISBN:5-354-00526-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Вайнберг - Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы краткое содержание
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.
Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?
Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.
Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами. Она распахивает читателю двери в новый мир и помогает понять то, с чем он там встретится.
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Б89
В квантовой электродинамике существуют и более серьезные проблемы. В 1954 г. Мюррей Гелл-Манн и Френсис Лоу показали, что эффективный заряд электрона очень медленно возрастает с ростом энергии процесса, в котором заряд измеряется, и выдвинули гипотезу (ранее высказанную советским физиком Львом Ландау), что при некоторой очень большой энергии эффективный заряд становится бесконечным. Позднейшие вычисления показали, что эта катастрофа происходит только в рамках чистой квантовой электродинамики – теории фотонов и электронов, и нигде более. Однако та энергия, при которой возникает бесконечность, столь велика (много больше, чем вся энергия, содержащаяся в полной массе наблюдаемой Вселенной), что задолго до того, как она будет достигнута, станет невозможно игнорировать все другие сорта частиц в природе. Таким образом, даже если и есть какие-то вопросы о математической согласованности квантовой электродинамики, они сливаются с вопросом о согласованности наших квантовых теорий всех частиц и взаимодействий.
Б90
Это сделали Фейнман и Гелл-Манн, и независимо Маршак и Сударшан.
Б91
Здесь я ссылаюсь на обобщение квантовой электродинамики, сделанное Янгом и Миллсом.
Б92
Это не совсем точно, поскольку я упомянул эту работу в докладе на Сольвеевском конгрессе в Брюсселе в 1967 г. Однако Институт научной информации подсчитывает только статьи, опубликованные в журналах, а мое замечание было опубликовано в материалах конференции.
Б93
Более точно, это была единственная статья по физике элементарных частиц (и вообще по физике, не считая биофизики, химической физики и кристаллографии) в списке из 100 статей по всем наукам, которые чаще всего цитировались в охваченный исследованиями Института научной информации период с 1945 по 1988 гг. (Из-за войны с 1938 по 1945 г., вероятно, просто не было часто цитируемых работ по физике элементарных частиц.)
Б94
Несколько лет тому назад я побывал в Оксфорде и имел возможность спросить руководителя оксфордского эксперимента с висмутом Пэта Сандерса, выясняла ли его группа, что было не так в предыдущих опытах. Он ответил мне, что этим никто не занимался и, к сожалению, не мог заниматься, поскольку оксфордские экспериментаторы уничтожили аппаратуру и использовали ее как часть новой установки, на которой теперь получаются правильные ответы. Вот так это делается.
Б95
Это предложение основывалось на принципе симметрии, предложенном Роберто Печчеи и Элен Квинн.
Б96
Эти модификации предложили М. Дайн, В. Фишлер и М. Средницки, а также Дж. Ким.
Б97
Это излучение обнаружили А. Пензиас и Р. Вильсон. Об открытии фонового излучения я рассказываю в своей книге «Первые три минуты».
Б98
Например, Бэзил Лиддел Гарт – защитник «непрямых действий».
Б99
Должен признать, что когда выражение «искусство войны» появляется в переводах классических трудов Сун Цзы, Жомини и Клаузевица, слово «искусство» используется в противоположность слову «наука», в том же смысле, как «умение» противоположно «знанию», но не как «субъект» противоположен «объекту» или «вдохновение» – «порядку». Использование этими авторами слова «искусство» служит для того, чтобы подчеркнуть, что они пишут об умении воевать, поскольку хотят принести пользу людям, реально выигрывающим войны, но собираются подойти к вопросу научно и систематически. Генерал конфедератов Джеймс Лонгстрит использовал термин «искусство войны» в очень похожем на тот, который использую я, смысле, когда говорил, что и Макклеллан, и Ли были «мастерами знания войны, но не ее искусства». Позднейшие историки, вроде Чарльза Омана и Сирила Фоллса, писавшие об «искусстве войны», объяснили, что не существует системы войны. Читатель, который добрался до этого места книги, согласится, что это же верно в отношении системы науки.
Б100
Астрофизик С. Чандрасекар трогательно написал о роли красоты в науке (Truth and Beauty: Aesthetics and Motivations // Science (Chicago: University of Chicago Press, 1987) и Bulletin of the American Academy of Arts and Science 43, no. 3 (December 1989): 14).
Б101
Я имею в виду десять уравнений поля и четыре уравнения движения.
Б102
Цитата взята из Holton G. Constructing a Theory: Einstein’s Model // American Scholar 48 (summer 1979): 323.
Б103
Гравитоны экспериментально не обнаружены, но это неудивительно. Расчеты показывают, что они так слабо взаимодействуют, что отдельные гравитоны и не могли быть обнаружены ни в одном из до сих пор осуществленных экспериментов. Тем не менее никто серьезно не сомневается в существовании гравитонов.
Б104
Строго говоря, эти семейства образуют только левые состояния электрона и нейтрино и u – и d -кварков. (Имеется в виду, что если совместить большой палец левой руки с осью вращения, направленной вдоль скорости частицы, то пальцы левой руки, охватывая ось, укажут направление вращения.) Различие между семействами, образованными левыми и правыми частицами, является причиной нарушения слабыми ядерными силами симметрии между правым и левым. (Асимметрия правого и левого в слабых взаимодействиях была предсказана в 1956 г. теоретиками Т. Ли и Ч. Янгом. Она была подтверждена в опытах по ядерному бета-распаду группой из Национального бюро стандартов в Вашингтоне под руководством Ц. By и в опытах по распаду пи-мезонов Р. Гарвиным, Л. Ледерманом и М. Вейнрихом, а также Дж. Фридманом и В. Телегди.) Мы до сих пор не знаем, почему только левые электроны, нейтрино и кварки образуют эти семейства; этот вопрос является вызовом для теорий, которые выйдут за рамки стандартной модели элементарных частиц.
Б105
В 1918 г. математик Герман Вейль предположил, что симметрия общей теории относительности по отношению к зависящим от пространства-времени изменениям положения или ориентации должна быть дополнена симметрией по отношению к зависящим от пространства-времени изменениям способа измерения (или «калибровки») расстояний и времени. Вскоре этот принцип симметрии был отвергнут физиками (хотя его версии до сих пор возникают в спекулятивных теориях), но математически он очень похож на внутреннюю симметрию уравнений электродинамики, которую стали поэтому называть калибровочной инвариантностью. Затем, после того как в 1954 г. Ч. Янг и Р. Миллс, в надежде понять сильные взаимодействия, ввели более сложный вид локальной внутренней симметрии, ее тоже назвали калибровочной симметрией.
Б106
Различные варианты введения нового атрибута кварков – цвета – были предложены О. Гринбергом, М. Ханом и Й. Намбу, и В. Бардиным, Г. Фрицшем и М. Гелл-Манном 38).
Читать дальшеИнтервал:
Закладка: