Аурика Луковкина - Полный курс за 3 дня. Микробиология
- Название:Полный курс за 3 дня. Микробиология
- Автор:
- Жанр:
- Издательство:Array Литагент «Научная книга»
- Год:2009
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Аурика Луковкина - Полный курс за 3 дня. Микробиология краткое содержание
Полный курс за 3 дня. Микробиология - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Диссоциация– одна из форм мутации, в результате которой в популяции микроорганизмов возникают особи, отличающиеся от исходных внешним видом и структурой колоний, так называемые S-формы (круглые, влажные, с блестящей гладкой поверхностью и ровными краями) и R-формы (колонии неправильной формы, непрозрачные, сухие, с неровными краями и шероховатой поверхностью). S– и R-колонии являются крайними формами диссоциации, между которыми могут встречаться переходные формы. Диссоциация – явление генетической природы, оно связано с хромосомными мутациями генов, контролирующих синтез липополисахаридов клеточной стенки бактерий. Эта форма мутации известна у многих видов, возникает в природных условиях, но чаще выявляется в стареющих культурах.
Рекомбинации– это обмен генетическим материалом между двумя особями с появлением рекомбинантных особей с измененным генотипом.
У бактерий существует несколько механизмов рекомбинации:
1) конъюгация;
2) слияние протопластов;
3) трансформация;
4) трансдукция.
Конъюгация– обмен генетической информацией при непосредственном контакте донора и реципиента. Наиболее высокая частота передачи у плазмид, при этом плазмиды могут иметь разных хозяев. После образования между донором и реципиентом конъюгационного мостика одна нить ДНК-донора поступает по нему в клетку-реципиент. Чем дольше этот контакт, тем большая часть донорской ДНК может быть передана реципиенту.
Слияние протопластов– механизм обмена генетической информацией при непосредственном контакте участков цитоплазматической мембраны у бактерий, лишенных клеточной стенки.
Трансформация– передача генетической информации в виде изолированных фрагментов ДНК при нахождении реципиентной клетки в среде, содержащей ДНК-донора. Для трансдукции необходимо особое физиологическое состояние клетки-реципиента – компетентность. Это состояние присуще активно делящимся клеткам, в которых идут процессы репликации собственных нуклеиновых кислот. В таких клетках действует фактор компетенции – это белок, который вызывает повышение проницаемости клеточной стенки и цитоплазматической мембраны, поэтому фрагмент ДНК может проникать в такую клетку.
Эффективность трансформации зависит от физико-химических условий, а также физиологического состояния реципиентов и трансформирующей ДНК.
Трансдукция– это передача генетической информации между бактериальными клетками с помощью умеренных трансдуцирующих фагов. Трансдуцирующие фаги могут переносить один или более генов. Трансдукция бывает:
1) специфической (переносится всегда один и тот же ген, трансдуцирующий фаг всегда располагается в одном и том же месте);
2) неспецифической (передаются разные гены, локализация трансдуцирующего фага непостоянна).
3. Бактериофаги
Бактериофаги (фаги) – это вирусы, поражающие клетки бактерий. Они не имеют клеточной структуры, не способны сами синтезировать нуклеиновые кислоты и белки, поэтому являются облигатными внутриклеточными паразитами. Бактериофаги широко распространены в природе и находятся в воде, почве, пищевых продуктах, различных выделениях из организма людей и животных. Выявляются у большинства патогенных и непатогенных микроорганизмов.
Фаги различаются по форме, типу взаимодействия с микробной клеткой и специфичности.
Большинство фагов имеет форму головастика или сперматозоида, некоторые фаги имеют кубическую или нитевидную форму. Размеры колеблются от 20 до 800 нм у нитевидных фагов.
Фаги, напоминающие своим внешним видом головастиков, изучены наиболее полно. Под микроскопом отчетливо видно, что они состоят из вытянутой икосаэдрической головки и хвостового отростка, внутри которого имеется цилиндрический стержень, сообщающийся отверстием с головкой. Снаружи хвостовой отросток покрыт чехлом, который способен сокращаться наподобие мышцы. Заканчивается хвостовой отросток шестиугольной базальной пластинкой, имеющей короткие шипы с нитевидными структурами, называемыми фибриллами.
Химический состав фагов ограничивается двумя основными химическими компонентами: нуклеиновыми кислотами (ДНК или РНК) и белком. Двунитчатая ДНК плотно упакована в виде спирали внутри головки. Белки же входят в состав оболочки, окружающей нуклеиновую кислоту, и во все структурные элементы хвостового отростка. Структурные белки фага различаются по составу полипептидов и бывают в виде множества идентичных субъединиц, которые уложены по спиральному или кубическому типу симметрии. У некоторых фагов, кроме структурных белков, обнаружены геномные, или внутренние, белки, связанные с нуклеиновой кислотой, а также белки-ферменты, которые участвуют во взаимодействии фага с клеткой.
Фаги по сравнению с бактериями являются более устойчивыми к действию химических и физических факторов. Так, ряд дезинфицирующих веществ не оказывает существенного влияния на фаги, но отмечается их высокая чувствительность к формалину и кислотам. При температуре 65–70 °С наступает инактивация большинства фагов. При высушиваниии в запаянных ампулах, а также при замораживании в глицерине при температуре – 185 °С они способны сохраняться длительное время. Ультрафиолетовые лучи и ионизирующая радиация вызывают их инактивацию, а в более низких дозах – мутацию.
Фаги могут существовать в двух формах:
1) внутриклеточной (это профаг, чистая ДНК);
2) внеклеточной (это вирион).
Фаги, как и другие вирусы, обладают антигенными свойствами и содержат группоспецифические и типоспецифические антигены.
Различают два типа взаимодействия фага с клеткой:
1) литический (продуктивная вирусная инфекция). Это тип взаимодействия, при котором происходит репродукция вируса в бактериальной клетке. Она при этом погибает. Вначале происходит адсорбция фагов на клеточной стенке. Затем следует фаза проникновения. В месте адсорбции фага действует лизоцим, и за счет сократительных белков хвостовой части в клетку впрыскивается нуклеиновая кислота фага. Далее следует средний период, в течение которого подавляется синтез клеточных компонентов и осуществляется дисконъюнктивный способ репродукции фага. При этом в области нуклеоида синтезируется нуклеиновая кислота фага, а затем на рибосомах осуществляется синтез белка. Фаги, обладающие литическим типом взаимодействия, называют вирулентными.
В заключительный период в результате самосборки белки укладываются вокруг нуклеиновой кислоты и образуются новые частицы фагов. Они выходят из клетки, разрывая ее клеточную стенку, т. е. происходит лизис бактерии;
Читать дальшеИнтервал:
Закладка: