Аурика Луковкина - Полный курс за 3 дня. Микробиология

Тут можно читать онлайн Аурика Луковкина - Полный курс за 3 дня. Микробиология - бесплатно ознакомительный отрывок. Жанр: sci_biology, издательство Array Литагент «Научная книга», год 2009. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Полный курс за 3 дня. Микробиология
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Научная книга»
  • Год:
    2009
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Аурика Луковкина - Полный курс за 3 дня. Микробиология краткое содержание

Полный курс за 3 дня. Микробиология - описание и краткое содержание, автор Аурика Луковкина, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Данный учебник предназначен для студентов медицинских ВУЗов, учащихся медицинских колледжей, а также абитуриентов. В нем содержатся сведения об ультраструктуре и физиологии бактерий, рассматриваются вопросы иммунологии и вирусологии, подробно описаны строение и морфология возбудителей различных инфекций, уделено внимание основам медицинской биотехнологии и генной инженерии.

Полный курс за 3 дня. Микробиология - читать онлайн бесплатно ознакомительный отрывок

Полный курс за 3 дня. Микробиология - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Аурика Луковкина
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Количество плазмид в бактериальной клетке может колебаться от одной до нескольких сотен и зависит от размера плазмиды: чем большие размеры она имеет, тем меньше ее копий в клетке. С помощью ампфликации генов (увеличения числа копий определенного гена в клетке) можно резко повысить производство кодируемого вещества клеткой.

Бактериофаг как вектор используется аналогично. Целевой ген встраивается в геном фага, реплицируется вместе с генами вируса при размножении последнего в бактериальной клетке. Чаще всего используется фаг ламбда, содержащий ДНК из 50 000 пар нуклеотидов. Его преимущество перед плазмидами заключается в том, что фаговый вектор позволяет клонировать большие фрагменты чужеродной ДНК.

В случае использования в качестве векторов вирусов человека, животных и растений чужеродный ген встраивают в ДНК вируса. Он реплицируется вместе с размножением последнего в клетке.

Применяют в качестве вектора и космиды – гибрид плазмиды с фагом, использующийся для клонирования больших фрагментов ДНК эукариот.

Для РНК-содержащих вирусов передача генетической информации возможна с помощью ревертазы, передающей информацию о структуре белка от РНК к ДНК, являющейся комплементарной РНК.

Получение рекомбинантных молекул ДНК и рекомбинантных бактерий сводится к тому, что экспрессируемый ген в виде рекомбинантной ДНК встраивается в бактериальную или животную клетку, приобретающую новое свойство – способность продуцировать несвойственное этой клетке вещество, кодируемое экспрессируемым геном. Для лучшего проникновения вектора через стенку бактерий иногда прибегают к воздействию на стенку (например, хлоридом кальция), чтобы увеличить ее проницаемость.

В качестве реципиентов экспрессируемого гена чаще всего используют Е. coli, В. subtilis, псевдомонады, дрожжи, вирусы с учетом возможности встройки чужеродного гена, а также уровня выраженности (экспрессии) синтеза вещества, кодируемого геном, возможности его секреции в окружающую среду, легкости и доступности массового культивирования, экологической безопасности. Некоторые штаммы рекомбинантных бактерий способны переключать на синтез чужеродного вещества, экспрессируемого геном, до 50 % своего синтетического потенциала, поэтому они нашли применение в биотехнологической промышленности и называются промышленными штаммами.

Некоторые штаммы микроорганизмов хорошо экспрессируют чужеродные гены, но плохо секретируют продукт в окружающую среду. В таких случаях применяют дезинтеграцию, или разрушение, клетки с целью высвобождения из нее синтезированного продукта.

В некоторых случаях, несмотря на наличие экспрессии и секреции, продукт не удается получить из-за разрушения в процессе синтеза или после него протеазами и другими ингибиторами.

С целью повышения уровня секреции целевого белка к гену целевого белка присоединяют ген белка, хорошо секретируемого клеткой рецепиента. В результате образованный химерный белок, хорошо секретируемый клеткой, собирают и от него отщепляют целевой белок. Также возможно присоединение гениндикатора к гену целевого белка, в результате чего получают химерный индикаторный белок, а из него – целевой белок.

2. Биологические препараты, полученные методом генной инженерии

Несмотря на то что методом генной инженерии получена не одна сотня препаратов, в практику внедрена только часть: интерфероны, интерлейкины, фактор VIII, инсулин, гормон роста, тканевый активатор плазминогена, вакцина против гепатита В, моноклональные антитела для предупреждения отторжения при пересадках почки, диагностические препараты для выявления ВИЧ и др. Это обусловлено несколькими факторами.

1. Невозможность управлять распространением экологически опасных рекомбинантных микроорганизмов, хотя в последнее время эти опасения отвергнуты;

2. Использование рекомбинантных штаммов продуцентов предусматривает разработку сложных технологических процессов по получению и выделению целевых продуктов, на которую уходит значительное количество времени, а также средств.

3. При получении препаратов методом геннной инженерии требуется проведение исследовательских работ, направленных на доказательство идентичности, а также иногда – решение дополнительных задач по приданию продукту природного характера.

Медицинскими препаратами, разрабатываемыми методами современной биотехнологии, являются антикоагулянты и тромболитики – тканевые активаторы плазминогена, фиксаторы VIII и IX; колониестимулирующие факторы – соматомедин С, гранулоцитный и макрофагальный колониестимулирующие факторы; иммуноцитокины – интерфероны, интерлейкины, фактор некроза опухолей, пептиды вилочковой железы и иные; гормоны – гормоны роста, инсулин, эритропоэтин; вакцины против ВИЧ-инфекции, малярии, гепатита В и иные; ферменты – липаза, протеазы; рецепторы – Т-4 лимфоцитов и др.; моноклональные антитела для иммунотерапии опухолей, предупреждения реакций отторжения; диагностикумы для выявления ВИЧ-инфекции, сифилиса, гепатита В и др.

Метод генной инженерии является одним из самых перспективных при получении многих белковых биологических веществ, представляющих ценность для медицины. В области создания биологически активных веществ медицинского назначения с помощью данного метода создаются препараты второго поколения, являющиеся аналогами природных веществ, обладающими большей эффективностью действия.

При определении целесообразности и экономичности методов генной инженерии для получения медицинских или других препаратов учитываются:

1) доступность;

2) экономичность;

3) качество получаемого препарата;

4) новизна;

5) безопасность проведения работ и др.

Положительные стороны метода генной инженерии перед остальными заключаются в следующем.

1. Природный микроорганизм или животные и растительные клетки не культивируются в промышленных условиях. С целью получения диагностических препаратов или вакцин прибегают к клонированию или синтезу генов протективных антигенов, их встраиванию в легко культивируемые бактерии. При выращивании этих рекомбинантных бактерий-рецепиентов получают нужные антигены, являющиеся основой для создания диагностического препарата или вакцины.

2. Микроорганизм высоко патогенен и опасен при промышленном производстве. Так, для получения ВИЧ-диагностических препаратов и вакцин необходимые антигены получают методом генной инженерии.

3. Исходное сырье для получения препарата традиционным способом является дефицитным или дорогостоящим.

4. Метод активно используется для получения принципиально новых продуктов и препаратов, не существующих в природе. Например, только с помощью генной инженерии можно получить рекомбинантные поливалентные живые вакцины, несущие антигены нескольких микроорганизмов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Аурика Луковкина читать все книги автора по порядку

Аурика Луковкина - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Полный курс за 3 дня. Микробиология отзывы


Отзывы читателей о книге Полный курс за 3 дня. Микробиология, автор: Аурика Луковкина. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x