Сергей Мамонтов - Биология. Общие закономерности. 9 класс
- Название:Биология. Общие закономерности. 9 класс
- Автор:
- Жанр:
- Издательство:Array Литагент «Дрофа»
- Год:2013
- Город:Москва
- ISBN:978-5-358-09880-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Мамонтов - Биология. Общие закономерности. 9 класс краткое содержание
Учебник адресован учащимся 9 класса и входит в учебно-методический комплекс «Сфера жизни», построенный по концентрическому принципу.
Большое количество красочных иллюстраций, разнообразные вопросы и задания, дополнительные сведения и любопытные факты, а также возможность параллельной работы с электронным приложением способствуют эффективному усвоению учебного материала.
Биология. Общие закономерности. 9 класс - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
• Ковалентные связи • Катализаторы
Вода.Самое распространённое неорганическое соединение в живых организмах – вода. Её содержание колеблется в широких пределах: в клетках эмали зубов около 10 % воды, а в клетках развивающегося зародыша – более 90 %. В среднем в многоклеточном организме вода составляет около 80 % массы тела.
Роль воды в клетке очень велика. Для живых организмов это не только необходимый компонент составляющих их клеток, но зачастую ещё и среда обитания.
Функции воды во многом определяются её химическими и физическими свойствами. Эти свойства связаны главным образом с малыми размерами молекул воды и их полярностью , а также способностью соединяться друг с другом водородными связями.
Одна часть молекулы воды несёт небольшой положительный заряд, а другая – отрицательный. Такую молекулу называют диполем. Положительно заряженные части одной молекулы воды притягивают к себе отрицательно заряженные части других молекул, молекулы воды как будто склеиваются (рис. 2). Эти взаимодействия, более слабые, чем ионные связи, называют водородными связями. Вода – превосходный растворитель для полярных веществ, участвующих в обменных процессах.
В качестве растворителя вода обеспечивает как приток веществ в клетку, так и удаление из неё продуктов жизнедеятельности, поскольку большинство химических соединений может проникнуть через наружную клеточную мембрану только в растворённом виде.

Рис. 2. Схема образования связей между отдельными диполями воды
Не менее важна и чисто химическая роль воды. Под действием некоторых катализаторов – ферментов – она вступает в реакции гидролиза. В результате образуются новые вещества с новыми свойствами.
Вода обладает хорошей теплопроводностью и большой теплоёмкостью, поэтому температура внутри клетки остаётся неизменной или её колебания оказываются значительно меньшими, чем в окружающей клетку среде.
Минеральные соли.Большая часть неорганических веществ клетки находится в виде солей – либо в состоянии ионов, либо в виде твёрдой нерастворимой соли. Среди первых большое значение имеют катионы К +, Na +, Ca 2+, которые обеспечивают такое важнейшее свойство живых организмов, как раздражимость.
От концентрации солей внутри клетки зависят её буферные свойства. Буферностью называют способность клетки поддерживать слабощелочную реакцию своего содержимого на постоянном уровне. Внутри клетки буферность обеспечивается главным образом анионами H 2PO 4 −и НРО 4 2−. Во внеклеточной жидкости и в крови роль буфера играют Н 2СО 3и HCO 3 −. Анионы слабых кислот и слабые щёлочи связывают ионы водорода и гидроксил-ионы (ОН −), благодаря чему реакция внутри клетки, т. е. величина рН, практически не меняется.
Основная масса Са и Р используется для построения костной ткани в виде двойных углекислых и фосфорнокислых солей с общей формулой СаСО 3 n Са 3(РO 4) 2. Они входят также в состав раковин моллюсков, обеспечивая прочность этих образований.
Вопросы для повторения и задания
1. Какие химические элементы составляют большую часть массы клетки?
2. Что такое микроэлементы? Приведите примеры и охарактеризуйте их биологическое значение.
3. Каковы особенности пространственной организации молекулы воды, обусловливающие её биологическое значение?
4. Какие минеральные соли входят в состав живых организмов?
5. Какие вещества обусловливают буферные свойства клетки?
6. Согласны ли вы с утверждением, что вода – колыбель всего живого? Объясните, почему жизнь зародилась именно в водной среде.
7. Предложите свою классификацию химических элементов, входящих в состав живых организмов.
8. Составьте и заполните таблицу «Химические элементы и их значение в живой природе».
Работа с компьютером
Обратитесь к электронному приложению.Изучите материал урока и выполните предложенные задания.
• Найдите в Интернетесайты, материалы которых могут служить дополнительным источником информации, раскрывающим содержание ключевых понятий параграфа.
• Подготовьтесь к следующему уроку.Используя дополнительные источники информации (книги, статьи, ресурсы сети Интернет и др.), сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.
2. Органические вещества, входящие в состав клетки
Вспомните!
• Определение жизни по Энгельсу • Определение жизни по Волькенштейну • Полимеры • Ферменты • Антитела
• Антигены • Полисахариды • Нуклеиновые кислоты
• Биологическая информация
Органические соединения составляют в среднем 20–30 % массы клетки живого организма. К ним относятся биологические полимеры – белки, нуклеиновые кислоты и углеводы, а также жиры и ряд небольших молекул – гормоны, пигменты, аминокислоты, простые сахара, нуклеотиды и т. д. Разные типы клеток содержат разные количества органических соединений. Так, в растительных клетках преобладают углеводы. Наоборот, белков больше в животной клетке, чем в растительной (40–50 % против 20–35 %).
Каждая группа органических веществ в клетке любого типа выполняет сходные функции.
Белки. Среди органических веществ клетки белки занимают первое место как по количеству, так и по значению. Это высокомолекулярные полимерные соединения, мономером которых служат аминокислоты. В организме человека встречается 5 млн типов белковых молекул, отличающихся не только друг от друга, но и от белков других организмов. Такое разнообразие обеспечивается сочетанием всего лишь 20 разных аминокислот, составляющих несколько сотен, а иногда и тысяч комбинаций. Например, из 20 остатков аминокислот теоретически можно составить около 2×10 18вариантов белковых молекул, различающихся порядком чередования аминокислот, а значит, и формой, и свойствами. Молекулы белков могут быть спиралевидными, складчатыми или шарообразными (рис. 3).

Рис. 3. Схема укладки полипептидной цепи в белковой молекуле
Функции белков в клетке чрезвычайно многообразны. Одна из важнейших – строительная (структурная) функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внеклеточных структур.
Исключительно важное значение имеет каталитическая роль белков. Все ферменты – вещества белковой природы, они ускоряют химические реакции, протекающие в клетке, в десятки и сотни тысяч раз.
Читать дальшеИнтервал:
Закладка: