Сванте Пэабо - Неандерталец. В поисках исчезнувших геномов
- Название:Неандерталец. В поисках исчезнувших геномов
- Автор:
- Жанр:
- Издательство:Литагент Corpus
- Год:2018
- Город:Москва
- ISBN:978-5-17-091066-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сванте Пэабо - Неандерталец. В поисках исчезнувших геномов краткое содержание
“Неандерталец” – это не только увлекательный рассказ о сенсационном прорыве, но и документ, фиксирующий важную веху в истории науки: становление палеогеномики, новой дисциплины, позволяющей методом исследования древних ДНК восстанавливать картину эволюции нашего вида в таких подробностях, о каких мы раньше не смели и мечтать.
Неандерталец. В поисках исчезнувших геномов - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Когда я был в Германии, мне стали немного понятны чувства людей, живущих при социализме. Если я опубликую статью с простыми формальными благодарностями в их адрес, они ужасно огорчатся. А мне хотелось, чтобы все было сделано как следует. Поэтому, посоветовавшись с Ростиславом и со Штефаном Грюнертом, молодым и активным немецким египтологом, с которым подружился во время поездки в Берлин, я решил готовить эту первую статью по ДНК из мумий для восточногерманского научного журнала. С трудом вспоминая школьный немецкий, я описал свои открытия, включил фотографии мумии и гистологических образцов, окрашенных на ДНК. А между тем я сделал вытяжку ДНК из этого образца. И на сей раз смог показать, что ДНК действительно присутствовала в тестовом геле. И я включил картинку с гелем в свою статью. Большая часть ДНК разложилась, но все равно остались немногочисленные кусочки по несколько тысяч нуклеотидов; фрагменты примерно такой длины можно получить и из образцов свежей крови. А это означало, как я написал тогда, что по молекулам ДНК из древних тканей можно изучать отдельные гены – размер остатков это вполне допускает. Я рассуждал, какие широкие перспективы открылись бы при систематическом изучении ДНК египетских мумий. Статья заканчивалась обнадеживающей фразой: “Работы следующих нескольких лет покажут, насколько оправданы эти ожидания”. Я отослал рукопись Штефану в Берлин. Он поправил мой немецкий, и в 1984 году статья появилась в журнале Das Altertum, который подчинялся восточногерманской Академии наук [3] S. Pääbo. Über den Nachweis von DNA in altägyptischen Mumien . Das Altertum 30, 213–218 (1984).
. И никакого эффекта. Никто не написал мне, ни один человек не попросил оттиск… Меня-то результат воодушевил, но кроме меня, кажется, никого…
Пришлось параллельно написать еще одну статью в западный журнал – Journal of Archaeological Science, – потому что я понимал, что в восточногерманские журналы мало кто заглядывает. В этой статье я описал те же результаты, только полученные на базе анализа мумифицированной головы мужчины. Но теперь меня настигло отчаяние из-за невероятной медлительности издательства – отсрочки получились даже больше, чем в восточногерманском журнале, где пришлось править язык и тщательно согласовывать с политической цензурой. Наверное, столь изумительная неторопливость отражает ту медлительность поступи, с которой движутся все науки о древностях. Journal of Archaeological Science опубликовал мою статью в конце 1985 года [4] S. Pääbo. Preservation of DNA in ancient Egyptian mummies . Journal of Archaeological Sciences 12, 411–417 (1985).
– к тому моменту все ее результаты были сметены ураганом событий.
Итак, ДНК в мумиях есть, и следующий шаг очевиден – нужно клонировать ее в бактериях. Я обработал кусочки ДНК ферментами, которые увеличивают восприимчивость свободных концов нитей, смешал с бактериальными плазмидами, затем добавил ферменты, которые сшивают вместе концы ДНК. Если все сделано правильно, то получается гибридная молекула, в которой соединены ДНК мумии и бактериальной плазмиды. Когда такую плазмиду внедряют в бактерию, то вся плазмидная ДНК реплицируется, давая множество копий, в том числе и встроенных участков. Но более того, если в плазмиде присутствует ген устойчивости к антибиотику, то я могу, добавив в среду этот антибиотик, отобрать бактерий с успешно внедренными плазмидами. Если на среде с антибиотиком вырастут колонии бактерий, то это будет означать, что операция по добавлению чужеродного фрагмента к бактериальной последовательности прошла успешно. Каждая такая колония берет начало от бактериальной клетки, несущей кусочек ДНК из мумии. Результат нужно было проверить – и я проделал контрольные эксперименты, это наиважнейший элемент любой лабораторной работы. Я сделал все то же самое, но не добавил к плазмидам ДНК мумии, а в другом контрольном варианте добавил к плазмидам современную человеческую ДНК. Когда бактерии вобрали в себя раствор с плазмидами, я высадил их на агар (это обычная микробиологическая питательная среда) с антибиотиком и отправил на ночь в инкубатор с температурой 37 оС. Наутро я открыл дверцу инкубатора и в предвкушении вдохнул густой влажный запах питательной среды. На чашке с современной ДНК выросли тысячи колоний, они покрывали почти всю поверхность. Это значит, что плазмиды сработали – бактерии выжили, потому что захватили плазмиды внутрь клеток и стали их реплицировать. Чашка, где к плазмидам не было добавлено никаких ДНК, оказалась безжизненной – колоний на ней не было. Отсюда можно заключить, что в моем эксперименте не было никаких дополнительных источников ДНК. А в самой главной чашке, той, куда добавлены были ДНК берлинской мумии, выросло около сотни колоний. Я был совершенно счастлив – я со всей очевидностью реплицировал ДНК 2400- летней мумии! Но только вдруг это ДНК бактерий из образца мумии, а не из самой мумии? Как доказать, что хотя бы часть этой ДНК принадлежит человеку?
Мне нужно было так или иначе определить последовательность этой ДНК, показав, что она человеческая, а не бактериальная. Если я возьму случайный клон, то может попасться и человеческий, и бактериальный фрагмент, а я потрачу на определение его последовательности, секвенирование, огромный труд; ведь тогда, в 1984 году, человеческий геном за исключением небольших участков еще не расшифровали, не говоря уже о сотнях геномов микроорганизмов. Поэтому меня не воодушевляла идея секвенировать случайный клон, нужно было выбрать строго определенный. Тут очень пригодилась методика, позволяющая идентифицировать клон, в котором присутствует последовательность нуклеотидов, похожая на некую заранее известную. Нужно взять некоторое количество бактерий из каждой колонии, поместить их на особый бумажный фильтр, где бактерии будут разрушены и их ДНК свяжется с веществом фильтра. Затем можно взять раствор с кусочками одноцепочечных ДНК, в которых присутствуют радиоактивные изотопы; эти “пробные” цепочки представляют ту последовательность, которую нужно выявить. Они будут гибридизоваться с комплементарными цепочками ДНК, присутствующими на фильтре. Я выбрал участок ДНК с характерным элементом человеческого генома – повтором Alu. Эта последовательность примерно из трехсот нуклеотидов встречается в геноме человека почти миллион раз, еще она имеется у обезьян. Этот повтор настолько распространен в человеческом геноме, что составляет более 10 процентов от его объема. Если бы такой повтор нашелся в бактериальных клонах, то это бы означало, что хотя бы в некоторых из них содержится ДНК человеческой природы.
Я взял кусочек гена, с которым занимался в лаборатории – там, как я знал, имелся повтор Alu, – внедрил в него радиоактивную метку. А потом обработал фильтр с теми самыми клонами. Некоторые из них гибридизовались с радиоактивной цепочкой – что и следовало ожидать от ДНК с человеческими свойствами. Я выбрал клон с самыми явными признаками гибридизации. Он содержал фрагмент ДНК, состоящий из примерно 3400 нуклеотидов. Взяв в помощники Дана Лархаммара, дипломника, который слыл у нас специалистом по секвенированию ДНК, я определил часть последовательности ДНК клона. И там действительно нашелся элемент Alu . Я очень обрадовался. В моих клонах присутствовала человеческая ДНК, она была получена именно с помощью бактериального клонирования.
Читать дальшеИнтервал:
Закладка: