С. Кочнева - Полный справочник невропатолога.
- Название:Полный справочник невропатолога.
- Автор:
- Жанр:
- Издательство:Array Литагент «Научная книга»
- Год:неизвестен
- ISBN:978-5-699-19438-4, 5-699-19438-X
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
С. Кочнева - Полный справочник невропатолога. краткое содержание
Полный справочник невропатолога. - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В покое клеточная мембрана обладает хорошей проницаемостью для ионов калия и хлора. Проницаемость для натрия гораздо ниже. Анионы и молекулы органических веществ не могут проникнуть через мембрану.
Следующим фактором, обусловливающим наличие и постоянство величины мембранного потенциала, является ионная асимметрия внутри клетки и снаружи. В клетке содержатся преимущественно ионы калия и анионы органических веществ, а вне ее больше ионов натрия, хлора и кальция. Ионную асимметрию можно считать главной причиной существования мембранного потенциала. Она поддерживается за счет избирательной проницаемости цитоплазматической мембраны и физико-химического равновесия Доннана.
Большое значение в поддержании мембранного потенциала имеют так называемые пассивные силы, объединяющие силы простой диффузии и электростатического взаимодействия ионов. Пассивными их называют потому, что для своей реализации они не требуют энергетических затрат. Действие этих сил можно проследить, например, на ионе калия. Клеточная мембрана хорошо проницаема для калия, в клетке содержание калия больше, чем вне ее. По градиенту концентрации калий выходит из клетки. Он заряжен положительно, следовательно, выходя на поверхность, он попадает под действие сил электростатического отталкивания, так как в состоянии относительного физиологического покоя наружная мембрана также заряжена положительно, и снова возвращается в клетку. Таким образом, калий находится преимущественно внутри нее.
Для хлора, находящегося большей частью снаружи, клеточная мембрана тоже легко проницаема. Аналогично калию, на хлор действуют силы простой диффузии, под воздействием которых он устремляется в клетку. Отрицательный заряд внутренней поверхности мембраны отталкивает анионы, и хлор остается снаружи.
Клеточная мембрана не пропускает ионы натрия, находящегося вне клетки, и анионы органических веществ (внутри), они не могут пройти через нее при помощи диффузии и соответственно, остаются за пределами клетки и в ней.
Фактически мембранный потенциал основывается на электрохимическом равновесии по иону калия (количество калия, вышедшего из клетки благодаря диффузии и вернувшегося путем электростатического отталкивания, одинаково). Это равновесие развивается при условии, если создается равенство сил диффузии и отталкивания в клетке.
Важным звеном в формировании и поддержании мембранного потенциала является работа натрий-калиевого насоса, активного транспорта ионов через цитоплазматическую мембрану против градиента концентрации с затратой энергии. Функционирование насоса происходит при участии натрий-калиевой АТФ-азы, которая за один цикл работы насоса выводит за пределы клетки три иона натрия и возвращает два калия.
При возникновении потенциала действия происходит снятие мембранного потенциала и перезарядка мембраны, что является результатом постепенного изменения проницаемости для определенных ионов. Он способен генерироваться только в определенных участках мембраны нервной клетки, называемых электровозбудимыми. Они располагаются в аксональном холмике (триггерная зона), нейрите, иногда в теле (но не на постсинапти-ческих мембранах), в перехватах Ранвье. Наиболее значимая из этих структур – аксональный холмик. Потенциал действия возникает лишь при достижении критического уровня деполяризации (влияние распространяющегося возбуждающего постсинап-тического потенциала из синапсов или рецепторного потенциала с чувствительных нейронов). Мембрана аксонального холмика содержит большое количество натриевых и калиевых каналов и, кроме того, имеет сравнительно низкий с другими структурами порог возбуждения. Это обусловливает более легкое достижение критического уровня деполяризации. Таким образом, этот участок является наиболее легко возбудимым в клетке.
С точки зрения мембранно-ионной теории, потенциал действия развивается благодаря повышению мембранной проницаемости для двух видов ионов – натрия и калия. Сначала открываются натриевые каналы, проницаемость увеличивается в 400–500 раз, и натрий устремляется в клетку. Для калия проницаемость становится возможна позже, к началу реполяризации, и увеличивается всего в 10–15 раз. В итоге в процессе формирования потенциала действия натрия выходит гораздо больше, чем выходит калия.
Потенциал действия – достаточно сложное комплексное явление, включающее несколько фаз. В первую очередь возникает локальный ответ, затем следует пик, или спайк, состоящий из фазы деполяризации и реполяризации, позже наблюдаются следовые потенциалы – отрицательный и положительный.
Локальный ответ (начальная фаза) возникает, когда сила действующего раздражителя еще не достигла пороговой (подпорого-вый раздражитель). Этот этап характеризуется увеличением ионной проницаемости мембраны для всех ионов (неспецифически). Мембранный потенциал начинает смещаться в положительную сторону. В процессе увеличения силы воздействия при достижении 50–70 % от порога уже имеет место специфическое увеличение проницаемости для натрия, который силами простой диффузии входит в клетку и частично деполяризует мембрану. Мембранный потенциал стремится к критическому уровню деполяризации, который в разных клетках может составлять примерно от 50 до 40 мВ
При достижении раздражителем пороговой силы начинается первый этап фазы спайка: деполяризация (восходящее колено). Мембранный потенциал достигает критического уровня, что вызывает открытие всех натриевых каналов и лавинообразный ток ионов внутрь клетки. Это становится причиной увеличения мембранного потенциала до нуля, а затем и перезарядки мембраны. Деполяризация прекращается после развития нового электрохимического равновесия по натрию и инактивации натриевых каналов.
В процессе реполяризации (нисходящее колено) мембрана начинает пропускать ионы калия. Он покидает клетку, удаляя таким образом положительный заряд. Перераспределение ионов активирует работу натрий-калиевого насоса.
За реполяризацией следует отрицательный следовой потенциал. Он характеризуется повторным незначительным увеличением проницаемости для натрия, который в небольшом количестве входит в клетку и вызывает приближение мембранного потенциала к критическому уровню – частичную деполяризацию. Эта фаза сменяется положительным следовым потенциалом, основным явлением которого называют следовую гиперполяризацию (формирование положительного заряда на наружной поверхности мембраны, возникающее в результате продолжения тока калия из клетки). В итоге величина мембранного потенциала вновь отдаляется от критического уровня.
Читать дальшеИнтервал:
Закладка: