Галина Ильина - Ксилотрофные базидиомицеты в чистой культуре
- Название:Ксилотрофные базидиомицеты в чистой культуре
- Автор:
- Жанр:
- Издательство:Литагент БИБКОМ
- Год:2013
- Город:Пенза
- ISBN:978-5-94338-638-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Галина Ильина - Ксилотрофные базидиомицеты в чистой культуре краткое содержание
Ксилотрофные базидиомицеты в чистой культуре - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Лигнин, очевидно, включается в метаболизм грибов не полностью, так как некоторая часть его превращается в высоко-конденсированный продукт. Реакции, обратные ферментативной деструкции, обнаружили и при выращивании грибов Heterobasidion annosum и Coriolus versicolor на лигнине молотой древесины, сульфатном лигнине и лигносульфонатах (Cote, 1968). Модельные эксперименты указывают на образование бифенильных структур в результате ферментативной дегидратации. Эту реакцию, по-видимому, вызывает лакказа, так как добавка ингибиторов лакказы предотвращает конденсацию. Добавление целлюлозы к культуре Pleurotus ostreatus на лигносульфонатах ингибировало реакции образования полимеров (Crawford, 1981). Целлюлоза превращается в целлобиозу – совместный субстрат (косубстрат) для целлобиозохиноноксидоредуктазы. Этот фермент уменьшает число фенольных радикалов и тем самым ингибирует полимеризацию.
Конденсированные лигнины, содержащие дифенильные связи, проявляют высокую устойчивость к действию ферментов грибов (Chen et al., 1981). В лиственном лигнине и искусственном гваяцил-сирингильном лигнине сирингильные элементы подвергаются деструкции быстрее, чем гваяцильные. Это объясняется большим содержанием в гваяцильной части лигнина дифенильных структур, у которых фенольные гидроксильные группы не склонны к образованию феноксильных радикалов (Фенгел, Вегенер, 1988).
Таким образом, существующие обзоры свидетельствуют о существенной дискуссионности проблемы трофического использования грибами такого нестереорегулярного биополимера как лигнин, однако исследования характера динамики метоксильных групп в питательном субстрате, обогащенном лигнином, при лабораторном культивировании грибов белой гнили, на наш взгляд, способно несколько прояснить этот вопрос.
От химической природы и особенностей используемого источника углерода зависит в основном и доступность для мицелиальной культуры того или иного источника азота. Азотистые соединения, которые являются важнейшей составной частью протоплазмы и играют большую роль в обмене веществ у грибов, являются основой белков (Горленко, 1985). Грибы не в состоянии связывать атмосферный азот, а могут принимать его только в форме неорганических солей или органических азотных соединений (Morton, Mc Millan, 1954). Большинство грибов хорошо усваивает аммиачные соли – сульфат аммония, фосфат аммония, а также аммиак из водного раствора. Соли азотной кислоты не всегда хорошо усваиваются (Беккер, 1988). Только некоторые виды дрожжей испытывают потребность в нитратах. Часто источником азота в состав сред включают мочевину. Также как и в случае с источниками углерода, роль источников азота в процессах роста и метаболизма наилучшим образом изучена и описана вотношении продуцентов антибиотиков. На средах с одними источниками азота организмы могут хорошо развиваться, но не осуществляют в данных условиях биосинтеза антибиотика. Это свидетельствует о наличии регуляторной роли доступности азота для его включения в процессы метаболизма (Егоров, 1986). Обычно в средах для культивирования микроорганизмов в качестве источника азота используют соли азотной (HNO 3), или реже соли азотистой (HNO 2) кислот, аммонийные соли органических или неорганических кислот (-NH 4) или аминокислоты (NH 2), белки и продукты их гидролиза (пептоны, гидролизаты). Как видно, в этих источниках азот находится или в виде окисленной формы (-NO 3, – NO 2), или в восстановленной форме (NH; – NH 2). В натуральных средах неопределенного состава, содержащих соевую муку, кукурузный экстракт и другие подобные компоненты, азот содержится главным образом в форме белков, питательная ценность которых зависит от наличия у микроорганизмов соответствующих протеаз, расщепляющих эти белки, и определяется тем, насколько легко в процессе ферментативного гидролиза из белков освобождается азот в виде аминокислот и несложных полипептидов, а в конечном счете в форме – NH 2. Аминокислоты играют существенную роль в метаболизме микроорганизмов. Это объясняется, во-первых, тем, что аминокислоты непосредственно участвуют в синтезе белка (структурного и ферментов) и различных полипептидов; во-вторых, они могут принимать участие в образовании антибиотиков, в том числе и небелковой природы. Аминокислоты могут оказывать заметное влияние на активность ферментов (индуцировать их образование или репрессировать, подавлять активность). Присутствие в среде одних аминокислот может приводить к образованию других.
Как уже указывалось, доступность того или иного источника азота зависит в основном от химической природы используемого углерода. Использование аммония и некоторых органических источников азота грибами в большой степени зависит от наличия в среде органических кислот. Небольшие количества (0,1 – 0,2 %) дикарбоновых кислот с четырьмя углеродными атомами (например, янтарная, фумаровая) способствуют лучшему усвоению азота. Это, по всей вероятности, связано с тем, что в данном случае легче образуются кетокислоты, которые, как было указано выше, в свою очередь, связывают аммиак. В этом виде значительно упрощается включение аммиака в метаболизм грибов. Определенную роль в развитии организмов и образовании вторичных метаболитов играют также катионы и анионы солей используемых источников азота (Егоров, 1986). Если организм хорошо использует аммонийную форму азота, то для его развития небезразлично, в какой форме этот аммоний вводится в среду. При использовании, например, сернокислого и молочнокислого аммония можно получить различные результаты, несмотря на то, что азот представлен одной и той же формой. При использовании сернокислого аммония среда будет сильно подкисляться в результате накопления ионов серной кислоты. Если же будет использоваться молочнокислый аммоний, то резкого сдвига в значении рН субстрата может не произойти, так как освобождающаяся молочная кислота легко может быть использована организмом в качестве источника углерода. Таким образом, в данном случае роль аниона при одной и той же форме азота будет также различной. Все эти факторы необходимо учитывать при изучении развития микроорганизмов и возможностей образования ими метаболитов.
Для продуцентов антибиотиков указывается, что в зависимости от источника азота и формы, в которой он присутствует в среде, микроорганизм будет в состоянии синтезировать антибиотическое вещество или он будет лишен этой способности (Егоров, 1986). Так, продуцент стрептомицина не образует антибиотика при развитии на средах с нитратами или нитритами в тех случаях, когда они являются единственными источниками азота. Образование стрептомицина происходит на средах с аммонийными источниками азота. Биосинтез пенициллина идет более энергично, если в среде наряду с аммонийным источником азота имеется нитратный источник азота.
Читать дальшеИнтервал:
Закладка: