Елена Кротова - Основы конструирования и технологии производства РЭС
- Название:Основы конструирования и технологии производства РЭС
- Автор:
- Жанр:
- Издательство:Литагент БИБКОМ
- Год:неизвестен
- ISBN:978-5-8397-0963-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Елена Кротова - Основы конструирования и технологии производства РЭС краткое содержание
Основы конструирования и технологии производства РЭС - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
К функциональнымотносятся все электрические параметры: чувствительность, избирательность, выходная мощность, дальность и т. п.
К материальнымпараметрам относится масса, габариты, стоимость и производные от этих параметров.
Между функциональными и материальными параметрами существует тесная взаимосвязь. Реализация любой РЭС требует материальных затрат. Чем большие значения имеют материальные параметры, тем выше сложность изделия [3], [8],[9].
Однако всегда нужно находить разумный компромисс между высоким качеством и важностью технического решения и сложностью реализации и себестоимостью.
1. Перечислите основные понятия конструирования.
2. Дайте определение основных документов и объектов конструирования.
3. Перечислите основные подходы системного анализа РЭС.
4. Какие виды параметров являются системными?
5. Дайте классификацию параметров РЭС.
Глава 2. Этапы системного подхода при проектировании конструкций и технологий РЭС
2.1. Основные принципы системного подхода к проектированию РЭС
Несмотря на то что РЭС – технический объект, в общефилософском плане ее рассмотрение невозможно в отрыве от человека – разработчика, оператора. При применении системного подхода в проектировании происходит взаимное влияние разработчика и объекта разработки друг на друга, правильнее сказать, своеобразный «диалог».
В основу системного подхода положены следующие главные принципы [3], [10], [11].
1. Учет всех этапов «жизненного цикла» разрабатываемой РЭС: проектирования, производства, эксплуатации, утилизации. При несоблюдении этого принципа проекты многих РЭС, в основу которых были заложены прогрессивные принципы их действия, остались нереализованными либо потому, что оказались недостаточно технологичными в производстве, слишком трудоемкими и, следовательно, дорогими и непригодными с точки зрения их производства, либо потому, что эксплуатация таких систем неоправданно сложна и выпуск такой продукции нецелесообразен.
2. Учет истории и перспектив развития РЭС данного и близкого классов.
Историю нужно знать потому, что некоторые РЭС, в прошлом признанные либо негодными, либо устаревшими, в новых условиях развития науки и техники могут стать хорошими и перспективными.
Учет при проектировании прогноза развития РЭС необходим потому, что в противном случае разрабатываемая система может оказаться морально устаревшей вскоре после разработки или до ее завершения.
3. Учет всестороннего взаимодействия РЭС с внешней средой. Оно включает в себя следующее [11]:
– взаимодействие с природой и обществом в целом (учет экологических, экономических, социальных, политических, военных и других факторов);
– обмен полезной информацией (получение и выдача полезной информации);
– обмен энергией и веществом (распределение ресурсов);
– обмен радиопомехами (т. е. помехами от радиоизлучения);
– внешние воздействия на РЭС температуры, влажности, давления, механических нагрузок, радиации и т. п.;
– взаимодействие с другими РЭС, входящими в систему более высокого иерархического уровня, в процессе решения общей задачи.
4. Учет основных видов взаимодействия внутри РЭС (между ее частями): функционального, информационного, энергетического и др.
5. Учет взаимодействия между элементарной базой и системотехникой. Создание новой элементной базы вызывает развитие системотехники.
Развитие элементной базы приводит к улучшению показателей качества и надежности РЭС. Применение гибридных электронных схем (ГИС), функциональных микросхем, программируемых логических интегральных схем (ПЛИС) и др. способствует значительному снижению энергозатрат, массы и габаритов.
Развитие нанотехнологий требует от разработчика углубленных знаний физики, математики, информационных технологий. Инженер не может отказаться от математического моделирования, а программист, работающий в радиотехнической промышленности, обязан знать физические основы работы электронных устройств.
6. Учет возможности изменения исходных данных и решаемой задаче в процессе проектирования, производства и эксплуатации РЭС. Этот учет выражается в создании более «гибкой» и универсальной РЭС. При этом следует необходимость:
– вариации исходных данных, включая критерии качества, в процессе проектирования РЭС для оценки степени их критичности на работу системы и получения более надежных результатов проектирования;
– обеспечения большей универсальности применения проектируемой РЭС, чтобы при изъятии или добавлении некоторых блоков система была пригодной для решения новых задач [3].
7. Выделение главных показателей качества, которые необходимо улучшать в первую очередь.
Показатели качества должны постоянно проверяться. Для оптимизации этого процесса необходимо взять показатели и, по возможности, стремитьcя к поддержанию их значений в заданных пределах. Для радиотехнических систем основные показатели качества – помехоустойчивость, конфиденциальность, электромагнитная совместимость, энергопотребление, надежность, масса, объем, стоимость. 8. Сочетание принципов композиции, декомпозиции и иерархичности. Современные РЭС могут содержать сотни, тысячи и миллионы элементов. Оптимизировать все элементы даже с помощью ПЭВМ невозможно. Поэтому их объединяют в сборочные единицы: ячейки, блоки, стойки (шкафы). Далее каждая сборочная единица рассматривается как единое целое, в котором производится композиция элементов. Сложную РЭС разбивают на отдельные ячейки, т. е. проводят декомпозицию.
В результате композиции и декомпозиции РЭС разбивают на ряд иерархических уровней, каждый из которых может содержать ряд частей (сборочных единиц).
Такое сочетание композиции, декомпозиции и иерархичности позволяет упростить проектирование, производство, эксплуатацию и утилизацию РЭС.
При декомпозиции РЭС на подсистемы (сборочные единицы) необходимо уделять особое внимание обоснованию критериев качества каждой подсистемы.
9. Вскрытие основных технических противоречий, препятствующих улучшению качества РЭС и ускорению процесса ее разработки, а также отыскание приемов их преодоления.
10. Правильное сочетание различных методов проектирования. В первую очередь математических, эвристических и экспериментальных. Современные математические методы основаны не только на разработке алгоритмов расчета отдельных параметров, но и на создании имитационных моделей, позволяющих приближенно проверить работу устройства в различных ситуациях [3], [4].
11. Обеспечение должного взаимодействия в процессе проектирования специалистов различных уровней и профилей.
Читать дальшеИнтервал:
Закладка: