Даниил Данин - Вероятностный мир

Тут можно читать онлайн Даниил Данин - Вероятностный мир - бесплатно полную версию книги (целиком) без сокращений. Жанр: Альтернативная история, издательство Знание, год 1981. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Даниил Данин - Вероятностный мир краткое содержание

Вероятностный мир - описание и краткое содержание, автор Даниил Данин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

14 декабря 1900 года впервые прозвучало слово «квант». Макс Планк, произнесший его, проявил осторожность: это только рабочая гипотеза. Однако прошло не так много времени, и Эйнштейн с завидной смелостью заявил: квант — это реальность! Но становление квантовой механики не было спокойно триумфальным. Здесь как никогда прежде драма идей тесно сплеталась с драмой людей, создававших новую физику. Об этом и рассказывается в научно–художественной книге, написанной автором таких известных произведений о науке, как «Неизбежность странного мира», «Резерфорд», «Нильс Бор». Собирая материал для своих книг, автор дважды работал в архиве Института теоретической физики в Копенгагене.

Книга научно–художественная. Для широкого круга читателей.

Вероятностный мир - читать онлайн бесплатно полную версию (весь текст целиком)

Вероятностный мир - читать книгу онлайн бесплатно, автор Даниил Данин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Там, в этом правиле, из одной величины — переменной — вычиталась другая величина — постоянная, и при этом значение переменной величины зависело от смены целых чисел. Только и всего!

Стоило подставить в формулу число 3, и после вычитания получалась частота световых колебаний для красной линии спектра. А число 4 тем же способом давало частоту зеленой линии. Число 5 — синей. Число 6 — фиолетовой. А для других целых чисел линии уходили в ульт·» рафиолетовый конец спектра, глазом неразличимый.

Какая же физика отражалась в этой арифметике бальмеровской спектральной серии?

Тысячи глаз смотрели на коротенькую формулу и не прозревали. Среди смотревших и непрозревавших бывали физики высокого класса. Кажется, Бор до конца своих дней не узнал об одной истории, случившейся за семь лет до его памятной встречи с Хансеном.

…1906 год. Пасхальные каникулы. Весна в Мозельской долине. Придорожный винный погребок. На велосипедах подкатывают двое из Аахена. Старшему — под сорок, младшему — двадцать с небольшим. Они расхваливают мозельвейн. Хозяин предлагает им оптовую сделку. Старший просит в ответ книгу для гостей. А младший навсегда запоминает появившуюся там запись: «Как только я сумею объяснить формулу Бальмера, я приеду к Вам за вином!»

Хозяин смотрит на два велосипедных следа, оставленных уехавшими, и прикидывает, когда же его осчастливит ученый шутник? Но проходят дни, недели, годы, а профессор из Аахена — маленький такой, с большими усами — все не приезжает за вином. Да его уже и нет в Аахене; говорят, он давно профессорствует в Мюнхене…

То был Арнольд Зоммерфельд — тот самый, кто на 1–м конгрессе Сольвея высказал к досаде Резерфорда неверие в любые атомные модели. Но, может быть, именно из–за его нежелания мыслить моделями ему и не далась в руки формула Бальмера?!

Ставший не менее известным теоретиком его тогдаыь ний молодой ассистент Петер Дебай рассказал этот эпизод историкам в качестве забавной детали былого. Но шутливая запись Зоммерфельда звучала вовсе не весело: в ней угадывалось обещание приехать, «когда рак свистнет», то есть неизвестно когда. Иначе: проблема формулы Бальмера виделась безнадежной даже многоопытному теоретику. А начинающий датчанин просто не знал, что она существует. Не было ли в таком неведении его преимущества? (Того благого неведения, о котором говаривал Эйнштейн, когда напоминал с улыбкой, как ему доводилось кое–что открывать в природе лишь по причине незнания, что открыть этого нельзя!)

Увидев формулу Бальмера, Бор уже не мог оторвать от нее взгляда. Его осенило понимание.

То был ярчайший пример откровения — истинная находка для психологов научного творчества. Еще раз подтвердилось, что откровение нисходит только на ищущих. Как и вдохновение, оно не служит предварительным условием успешной работы, а само является первым успехом упрямого труда, когда вдруг становится «далеко видно». Слово «откровение» произнес в беседе с историками сам Бор — так он почувствовал тогда происшедшее.

А произошло вот что…

Бор увидел, что формула Бальмера, в сущности, описывает рождение световых квантов в глубинах водородного атома. Да, рождение порций электромагнитной энергии разных частот: красной, синей, фиолетовой, а там и других порций с частотами, уже не воспринимаемыми человеческим глазом.

Бору все сказали две обыкновеннейшие черты в спектральной формуле: знак вычитания «—» и чередование целых чисел 3, 4, 5, 6… Мысли надо было, право же, очень настрадаться в поисках решения, чтобы так обострилась ее восприимчивость к самым тихим намекам на возможную правду.

Знак «минус» связывал две величины: большую (переменную) и меньшую (постоянную). И оттого, что из первой вычиталась вторая, возникала порция света определенной частоты колебаний! Значит, собственная энергия атома становилась меньше на эту излученную порцию. Стало быть, переменная величина изображала в формуле энергию атома до излучения (потому она и была больше), а постоянная изображала энергию атома после излучения (потому она и была меньше).

Улетевшая порция в одном случае была малой — красный квант, в другом побольше — зеленый квант, в третьем еще больше — синий квант… И это–то зависело от целых чисел, что входили в переменную величину: 3, 4, 5, 6… Чем больше было целое число, тем солидней излученный квант. Тем выше первоначальная энергия атома, с частью которой он расставался при излучении света. Но ведь это означало нечто удивительное: это показывало, что энергия атома не могла быть какой угодно.

Она менялась не плавно, а целыми шажками — прерывисто, как, скажем, меняется нумерация этажей в доме.

Это соображение было равносильно открытию, что в атоме есть пунктирная последовательность уровней энергии.

Каждый излучаемый квант берет старт со своего уровня: красный с одного (не очень высокого), зеленый с другого (более высокого), синий с третьего (еще более высокого)… Так, для бегунов, бегущих по разным дорожкам, старты выстраивают на современных стадионах ступенчато. И нельзя срываться в бег с любого места — только с разрешенной отметки.

А что могло означать постоянство второй величины — энергии атома после излучения? Она, эта остаточная энергия, пребывала одной и той же, какой бы квант ни улетел. Разве это не указывало на существование в атоме самого низкого уровня энергии — как бы первого этажа? Так, для всех бегунов старты хоть и разные, а финишная линия — одна.

Это очередное соображение было равносильно тому желанному открытию, к которому Бор так стремился: у атома есть наинизшее устойчивое состояние с энергией, вовсе не равной нулю! Так как излучают в атоме движущиеся электроны, это показывало, что они не теряют энергию своего движения до конца — не падают на ядро. Во всяком случае в атоме водорода его единственный электрон не опускается ниже какой–то высоты над ядром. Неизвестные законы запрещают ему это сделать. Иначе в формуле Бальмера постоянная величина — энергия после излучения — не была бы конечной: вместо нее стоял бы нуль, то есть ничего не стояло бы.

Внезапно прозревший Бор почувствовал, что наконец–то он вышел на верный путь. В те дни он написал письмо манчестерскому приятелю Дьердю Хевеши, и там была взбалмошная фраза — без необходимых запятых и с лишними вопросительными знаками. Эта фраза выдавала волнение Бора:

«…И надежда, и вера в будущее (может быть, совсем близкое) огромное и непредвиденное??? расширение нашего понимания вещей…»

Неисповедимы пути познания… Бор написал эти строки 7 февраля 13–го года, а всего неделей раньше в другом письме — к Резерфорду — уверял, что «вообще не занимается проблемой вычисления частот, соответствующих линиям в видимом спектре».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Даниил Данин читать все книги автора по порядку

Даниил Данин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Вероятностный мир отзывы


Отзывы читателей о книге Вероятностный мир, автор: Даниил Данин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x