Даниил Данин - Вероятностный мир
- Название:Вероятностный мир
- Автор:
- Жанр:
- Издательство:Знание
- Год:1981
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Даниил Данин - Вероятностный мир краткое содержание
14 декабря 1900 года впервые прозвучало слово «квант». Макс Планк, произнесший его, проявил осторожность: это только рабочая гипотеза. Однако прошло не так много времени, и Эйнштейн с завидной смелостью заявил: квант — это реальность! Но становление квантовой механики не было спокойно триумфальным. Здесь как никогда прежде драма идей тесно сплеталась с драмой людей, создававших новую физику. Об этом и рассказывается в научно–художественной книге, написанной автором таких известных произведений о науке, как «Неизбежность странного мира», «Резерфорд», «Нильс Бор». Собирая материал для своих книг, автор дважды работал в архиве Института теоретической физики в Копенгагене.
Книга научно–художественная. Для широкого круга читателей.
Вероятностный мир - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Скольжение по незапятнанной белизне февральских снегов норвежской Даларны помогало думать, как он любил: освобождаясь от предвзятостей, всем нам внушаемых макроопытом жизни — нашим зрением, нашим слухом, нашим осязанием, наконец, языком нашего общения.
…А Гейзенберг на заснеженных дорожках копенгагенского парка обдумывал вопрос: что же в самом деле видит физик на вильсоновских фотографиях, вглядываясь в белые ниточки–пути заряженных частиц?
«Мы всегда так легко и бойко говаривали, что траектория электрона в туманной камере доступна наблюдению, но то, что мы в действительности наблюдаем, быть может, представляет собою нечто гораздо более скромное… Просто серии дробных и нечетко очерченных ячеек пространства, в которых побывал электрон… Цепочки отдельных капелек влаги, которые несравненно больше электрона…»
Он предметно осознал правоту Эйнштейна: разумеется, надо привлечь теорию, дабы рассудить, что же открывается нашим глазам. Тут работали вместе теория возникновения туманов и теория размеров электрона–частицы.
Пусть капелька — ячейка пространства — будет мельчайшей: диаметром в тысячную долю миллиметра (10 –4см). Все–таки электрон (10 –13см) окажется в миллиард раз меньше! Если электрон — сантиметровая муха, то капелька тумана — полая планета. Внутри капельки электрон, как муха внутри сферы величиною с Землю. Где он там находится и куда в данный момент летит? Неопределенность ответа так чудовищна, что задаваться вопросом о траектории электрона, глядя на туманный его след, то же самое, что спрашивать о траектории мухи, наблюдая движение Земли по ее орбите.
Нет, очевидно, спрашивать надо о другом. Совсем о другом:
«…Может ли квантовая механика описать тот факт, что электрон только приблизительно находится в данном месте и только приблизительно движется с данной скоростью, и как далеко мы можем сводить на нет эту приблизительность?..»
Классическая механика ответила бы не колеблясь: все зависит от точности измерительных процедур. В идеале не должно быть никаких приблизительностей. Теоретически их всегда и всюду можно довести до нуля. В моих формулах царит полная и неподкупная точность.
Квантовой механике приходилось быть осторожней. Вероятностное поведение электрона предостерегало от такой гордыни. Эта механика в гейзенберговской форме записывает на полях своих «турнирных таблиц» обилие возможностей, открытых перед электроном. Проигрывая в точности, она выигрывает в богатстве описания природы. Она — механика возможного, которому еще предстоит с разной вероятностью стать действительным. В лаборатории, как и в природе. Поскольку в лаборатории не происходит ничего, противного законам природы.
Когда взялся Гейзенберг за вывод математического ответа на новый вопрос — вопрос о приблизительностях, тотчас появилась на бумаге неклассическая формула: AB ≠ BA … Эти буквы были для него в тот момент символами операций идеального — наиточнейшего! — измерения именно координаты электрона ( А) и скорости ( В). Но теперь он принялся манипулировать не с самими измерениями, а с возможными приблизительностями — неопределенностями! — в их результатах: Δ A и Δ В (дельта A и дельта В).
Он жаждал увидеть, что происходит с этими «дельтами» — с этими вынужденными неопределенностями — по законам его механики: могут ли они обе вместе исчезать — становиться равными нулю — в процессе движения электрона?
Классического ответа: «Конечно, могут и должны!» — он не ожидал. Если эти неопределенности могут исчезать, значит, есть у электрона определенная траектория движения. И сказка начинается сначала. Нет, он скоро убедился, что «дельты» вместе никогда не сводятся к нулю. Но ему надо было показать математически, как далеко их можно сводить на нет — какова максимально достижимая точность в измерении координаты и скорости, если узнавать их для одного и того же момента движения.
Надо было найти предел, который тут поставила природа.
…А Бор, начав издалека, совершил мысленный скачок через море подробностей к своему первому покушению на классическую однозначную причинность — к открытию квантовых скачков.
Он любил говорить о присущей атомным процессам целостности. Атом, излучающий квант, нельзя задержать на полдороге: не существует полдороги и половинки кванта. Действует взамен классического девиза «природа не делает скачков» другой девиз: или — все, или — ничего! Либо перескок в новое устойчивое состояние, либо пребывание на прежнем рубеже. Из–за утраты непрерывности — он не уставал повторять это — закрывается возможность плавно–причинного описания внутриатомных событий.
Лишенный на своей одинокой лыжне оппонента во плоти, он сам находил возражения за бдительного противника:
— Согласен, квантовые скачки–переходы непроследимы. Они как прыжок через пропасть в непроглядной тьме: был прыгун на одной стороне и очутился на другой, а траектория его прыжка осталась неизвестной. Но ведь была же она строго определенной! Разве не зависела она от начальных условий прыжка — от местоположения точки отталкивания и от скорости тела в исходный момент? Наша беда, что мы не умели из–за темноты засечь эти начальные условия, однако наша беспомощность к делу отношения не имеет. Существенно лишь то, что они, эти начальные условия, были! А дальше все могли бы рассказать о линии полета прыгуна классические уравнения. Так отчего же надо по–иному смотреть на квантовые скачки? И у каждого из них есть точные начальные условия! Узнавать их — наша забота, а природа ни в чем не виновата. Пожалуйста, раз это практически не выполнимо, прибегайте к законам случая и обсуждайте вероятности разных вариантов скачка, но не делайте отсюда слишком далеко идущих выводов: не утверждайте, что в микромире нет места для однозначного хода событий — для классической причинности. У вас просто нет на это права…
Возражать противнику было трудно. Меж тем весь опыт физики микромира требовал возражать. Снова и снова Бор убеждался: квантовой механике чего–то недостает, чтобы доказательно опровергнуть доводы классика.
Слабо защищенным, а вернее, вовсе незащищенным выглядел в этих доводах один пункт: уверенность, что самой природе в отличие от беспомощного физика безусловно известны точные начальные условия квантовых скачков. Это было нечто вроде религиозной догмы: классика так велела!
…Но классика велела, чтобы время было абсолютным, а оно оказалось относительным.
…Классика велела, чтобы физическая скорость могла быть сколь угодно большой, а обнаружился предел — скорость света в вакууме.
Читать дальшеИнтервал:
Закладка: