Евгений Гусев - Расширяя границы Вселенной: история астрономии в задачах

Тут можно читать онлайн Евгений Гусев - Расширяя границы Вселенной: история астрономии в задачах - бесплатно ознакомительный отрывок. Жанр: Альтернативная история, издательство Издательство Московского центра непрерывного математического образования, год 2003. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Расширяя границы Вселенной: история астрономии в задачах
  • Автор:
  • Жанр:
  • Издательство:
    Издательство Московского центра непрерывного математического образования
  • Год:
    2003
  • Город:
    Москва
  • ISBN:
    5-94057-119-0
  • Рейтинг:
    3.7/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Евгений Гусев - Расширяя границы Вселенной: история астрономии в задачах краткое содержание

Расширяя границы Вселенной: история астрономии в задачах - описание и краткое содержание, автор Евгений Гусев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Расширяя границы Вселенной: история астрономии в задачах - читать онлайн бесплатно ознакомительный отрывок

Расширяя границы Вселенной: история астрономии в задачах - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Евгений Гусев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

4.107. Земля, находясь в противостоянии для Венеры, освещает её поверхность в 13 тыс. раз слабее, чем она освещает Луну в «полноземелие». Такое слабое освещение не может быть обнаружено, тем более — глазом. Тем не менее, опытные наблюдатели не раз указывали на существование этого феномена (Мейер, 1902, с. 125). В настоящее время предполагают, что пепельный свет Венеры вызван физикохимическими процессами, происходящими в атмосфере этой планеты.

4.108. На Венере, как и на Земле, горы высотой 43 км обладали бы такой тяжестью, что обязательно разрушили бы кристаллическую решётку пород в своём основании, и оно растеклось бы, не выдержав давления. Поэтому таких высоких гор на этих планетах нет. Самые большие горы в Солнечной системе обнаружены на Марсе (H=25–27 км), где сила тяжести на поверхности заметно меньше, чем на Земле и Венере.

4.109. Температура на поверхности Венеры, измеренная космическими аппаратами, оказалась около 480 °C, что больше критической для воды (Т=374,4 °C), выше которой она не может существовать в жидкой фазе ни при каком давлении.

4.110. Смена времён года на Марсе происходит, как и на Земле, вследствие изменения солнечной инсоляции, причиной которого служит наклонение плоскости экватора планеты к плоскости её орбиты. Смена времён года на Марсе наиболее наглядно проявляется в изменении размера полярных шапок.

4.111. Гипотеза основывалась на предположении о существовании у Марса мощной атмосферы (Кассини, Ремер, XVII в.). Покрытия звёзд Марсом, во время которых звёзды исчезали мгновенно, указали на то, что атмосфера планеты тонкая и не может вызвать сильное поглощение в коротковолновой части спектра. В 1865 г. было замечено, что красный цвет гуще около центра диска, что также свидетельствовало против атмосферной гипотезы. Хёггинс в 1867 г. отметил, что белый цвет полярных шапок также противоречит атмосферной гипотезе.

4.112. Земные и космические радиометрические измерения показали, что максимальная температура в поверхностном слое грунта на Марсе в полдень в жарком поясе не превышает —5 °C; среднегодовая температура на широте тропика —43 °C, минимальная там же —90 °C. В более высоких широтах температура ещё ниже. Полярные шапки состоят из сухого льда (твёрдой углекислоты) с небольшой примесью водяного льда. Открытых водных пространств на Марсе нет и, следовательно, не может быть пространств, покрытых обычным снегом.

4.113. До полётов межпланетных станций основные исследования Марса производились в годы великих противостояний, когда Марс ближе всего подходит к Земле. В 1877 г. как раз и произошло такое астрономическое событие. Незадолго до этого были построены крупные телескопы — рефракторы высокого качества.

4.114. По мнению Г. А. Тихова, в условиях сурового марсианского климата гипотетические растения Марса должны отражать меньше тепловых лучей; следовательно, они должны иметь сине — фиолетовую окраску. Это предположение согласуется с тем фактом, что растения высокогорных районов Земли (голубая канадская ель, тянь — шаньская ель) не имеют в своём спектре инфракрасного избытка. Однако исследования, проведённые автоматическими аппаратами непосредственно на поверхности Марса, опровергли существование там не только растительной жизни, но даже её примитивных форм.

4.115. Фламмарион имел в виду прецессию оси вращения Марса, вызванную приливным гравитационным влиянием Солнца на экваториальное вздутие планеты. Период прецессии оценивается примерно в 175 тыс. лет. По истечении половины этого периода северное полушарие планеты будет повёрнуто к Земле в эпоху великого противостояния, совпадающую с эпохой прохождения Марса через перигелий.

К решению задачи 4117 Тонкая структура колец Сатурна по визуальным - фото 32

К решению задачи 4.117. Тонкая структура колец Сатурна по визуальным наблюдениям, проведённым в XIX веке.

4.116. В свой несовершенный телескоп Галилей смог увидеть планету Сатурн и дуги окружающих её колец как три соприкасающиеся «звезды». Через два года, когда луч зрения земного наблюдателя оказался в плоскости колец, они из‑за малой толщины вообще перестали быть видны. Лишь в 1656 г. Христиан Гюйгенс с помощью более качественного телескопа доказал, что «ушки» или «ручки» по бокам Сатурна — это не что иное, как части плоского кольца, опоясывающего планету по экватору.

4.117. Директор Парижской обсерватории Д. Д. Кассини в 1675 г. обнаружил, что кольцо Сатурна состоит из двух частей, разделённых тёмной полосой (деление Кассини). Он также предположил, что кольцо планеты состоит из большого количества отдельных небольших тел. В наши дни распространено мнение, что тонкая структура колец Сатурна была открыта лишь на изображениях, переданных межпланетными аппаратами «Пионер-11» (октябрь 1979 г.), «Вояджер-1» (ноябрь 1980 г.) и «Вояджер-2» (август 1981 г.). Однако ещё астрономы XIX века в процессе визуальных наблюдений замечали и очень точно зарисовывали тонкую структуру колец (см. рис.).

4.118. Меркурий, Венера, Марс, Юпитер и Сатурн в максимуме блеска очень яркие и поэтому хорошо видны невооружённым глазом. Наибольший же блеск далёких планет существенно ниже: 5,4 mу Урана, 7,6 mу Нептуна, 13,4 mу Плутона. Для обнаружения этих планет, а также астероидов, необходимы подробные карты звёздного неба и телескопы, массовое применение которых началось только с XVIII века. Правда, в XVII веке астрономы случайно наблюдали и даже зарисовывали Уран и Нептун, но, не имея хороших телескопов и карт, принимали их за звёзды.

4.119. Кометы на больших расстояниях от Солнца имеют дискообразный вид, и поэтому похожи на планеты. При этом они почти так же, как планеты, перемещаются относительно звёзд. Кометы в ту эпоху открывали и наблюдали, а вот открытие новой большой планеты стало полной неожиданностью.

4.120. В. Гершель первым, благодаря остроте зрения и хорошему качеству телескопического изображения, обнаружил у вновь открытого объекта диск. Другие наблюдатели видели планету в виде звездообразного объекта. Планетная орбита Урана была установлена петербургским астрономом А. И. Лекселем вскоре после открытия, в том же 1781 г.

4.121. При расчёте орбиты Урана были использованы позиционные наблюдения планеты, считавшейся в то время звездой, сделанные наблюдателями — предшественниками Гершеля, начиная с 1690 г., т. е. почти на протяжении целого века.

4.122. Галилей наблюдал в телескоп Нептун ещё в 1612 г., не зная, что этот объект — планета. Французский астроном Жозеф Ла- ланд также наблюдал Нептун 8 и 10 мая 1795 г. Он заметил, что положение объекта за двое суток изменилось, но посчитал первое из наблюдений неверным. Лишь в 1846 г. Урбен Леверье открыл Нептун путём вычислений. 31 августа он сообщил о вычисленных им параметрах орбиты Нептуна и указал, что объект должен иметь блеск около восьмой звёздной величины и заметный диск. Откликнувшись на просьбу Леверье, астроном Берлинской обсерватории Г. Галле в первую же ночь наблюдений, 23 сентября, обнаружил неизвестную планету с диаметром диска 8″. Движение объекта относительно звёзд подтвердило открытие. К теоретическому открытию Нептуна причастен и английский астроном и математик Джон Адамс, который на основании возмущений в движении Урана рассчитал элементы эллиптической орбиты и массу гипотетической планеты и осенью 1845 г. представил свои результаты английским наблюдателям, которые, однако, не откликнулись на его предложение организовать поиск планеты.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Евгений Гусев читать все книги автора по порядку

Евгений Гусев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Расширяя границы Вселенной: история астрономии в задачах отзывы


Отзывы читателей о книге Расширяя границы Вселенной: история астрономии в задачах, автор: Евгений Гусев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x