Терри Пратчетт - Наука Плоского Мира II: Земной шар

Тут можно читать онлайн Терри Пратчетт - Наука Плоского Мира II: Земной шар - бесплатно полную версию книги (целиком) без сокращений. Жанр: Юмористическая фантастика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Терри Пратчетт - Наука Плоского Мира II: Земной шар краткое содержание

Наука Плоского Мира II: Земной шар - описание и краткое содержание, автор Терри Пратчетт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Эта книга сама по себе является историей – хотя, нет – двумя историями, сплетенными вместе. История, записанная в нечетных главах, - это фантастическая повесть о Плоском Мире. В четных же главах мы расскажем историю о науке Разума (снова в метафизическом смысле). Обе истории тесно связаны, и по замыслу должны подходить друг к другу, как перчатка и нога; научная история представлена в виде Очень Длинных Сносок к фэнтези-главам.

Наука Плоского Мира II: Земной шар - читать онлайн бесплатно полную версию (весь текст целиком)

Наука Плоского Мира II: Земной шар - читать книгу онлайн бесплатно, автор Терри Пратчетт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кауффман противопоставляет две различные системы. Первая — это традиционная модель, используемая в термодинамике — N молекул газа (представленных в виде жестких сфер), отскакивающих друг от друга в 6N-мерном фазовом пространстве. В данном случае фазовое пространство известно нам заранее, мы можем точно описать динамику систему и вывести общие законы ее поведения. Среди них будет Второй Закон Термодинамики, который предсказывает практически 100 %-ую вероятность того, что с течением времени система станет менее упорядоченной, а ее молекулы равномерно распределятся по пространству внутри контейнера.

Вторая система — это «биосфера», или эволюционирующая экосистема. В этом случае выбор фазового пространства вовсе не очевиден. Возможные варианты оказываются либо слишком большими, либо слишком ограниченными. Предположим на секунду, что давняя мечта биологов о ДНК-языке живых организмов стала реальностью. Возможно, тогда мы могли бы использовать пространство всех ДНК в качестве фазового пространства системы.

Однако, как мы уже видели, лишь крошечное и довольно замысловатое подмножество этого пространства представляет настоящий интерес — вот только определить это подмножество мы не можем. Если еще учесть, что подобного языка может и не существовать, то вся эта идея разваливается на части. С другой стороны, если фазовое пространство будет слишком маленьким, то вполне допустимые изменения могут вывести организм за его пределы. Например, пространство тигров можно определить, исходя из количества полосок на теле этой большой кошки. Но если однажды эволюция явит миру кошку, которая вместо полосок покрыта пятнами, для нее не найдется места в пространстве тигров. Разумеется, она уже не будет тигром…, хотя ее мать к тиграм по-прежнему относится. Если мы хотим понять биологию реального мира, то не можем на разумных основаниях исключать подобные нововведения из рассмотрения.

В ходе эволюции организмы претерпевают изменения. Иногда кажется, что эволюция находит новые области фазового пространства, которые просто ждали своего часа, но еще не были заняты каким-либо организмами. Изменение окраски или узора на теле насекомого открывает нам новые области в «пространстве насекомых», о котором мы имеем вполне определенное представление. Когда же появляется совершенно новая черта, например, крылья, кажется, что изменяется само фазовое пространство.

Охватить феномен инновации в математической модели довольно сложно. Математики предпочитают определить пространство возможностей заранее, но весь смысл инноваций как раз в том, что они открывают новые возможности, которые раньше никто не предвидел. В итоге Кауффман предположил, что ключевая особенность биосферы состоит в том, что ее фазовое пространство заранее описать невозможно.

Несмотря на риск внести путаницу, все же стоит заметить, что даже в физике заранее определить фазовое пространство не так просто, как может показаться. Что произойдет с фазовым пространством Солнечной системы, если мы позволим небесным телам разрушаться и соединяться вместе? Предположительно [26] См. первую часть «Науки Плоского Мира», глава 20 «A Giant Leap for Moonkind» («Гигантский прыжок Луны» — прим. пер.). Луна откололась от Земли, когда последняя столкнулась с объектом, близким по размеру к Марсу. До этого события в фазовом пространстве Солнечной системы не было «лунной» координаты, но она появилась впоследствии. В результате с появлением Луны это фазовое пространство расширилось. В физике фазовые пространства всегда подразумевают неизменный контекст, и обычно это предположение вполне оправдано. В биологии это не так.

В физике есть и другая проблема. К примеру, 6N-мерное фазовое пространство в термодинамике слишком велико. Оно содержит состояния, не имеющие физического смысла. Причуды математики таковы, что законы движения упругих сфер не предписывают результат столкновения трех и более объектов. Значит, мы должны исключить из этого замечательного и простого 6N-мерного пространства все конфигурации, которые испытывают тройные соударения в прошлом или будущем. Нам известно о четырех особенностях этих конфигураций. Во-первых, они встречаются очень редко. Во-вторых, они все же случаются. В третьих, они образуют чрезвычайно сложное облако точек в фазовом пространстве. И наконец, с практической точки зрения нет никакой возможности выяснить, должна ли конкретная конфигурация быть исключена из пространства, или нет. Если бы эти не-физические состояния встречались чаще, то предопределить фазовое пространство в термодинамике было бы так же сложно, как и в случае биосферы. Однако их доля по сравнению с общим число конфигураций исчезающе мала, поэтому упуская их из виду, мы практически ничего не теряем.

И все же предопределение фазового пространства биосферы в некотором смысле возможно. Хотя мы и не можем заранее описать пространство всех вероятных форм жизни, мы можем, взглянув на любой конкретный организм — теоретически, по крайней мере, — указать на непосредственные изменения, которые могут произойти с ним в будущем. Иначе говоря, мы можем описать локальное фазовое пространство, или пространство смежных возможностей. Тогда инновация становится процессом расширения в пространство смежных возможностей. Это вполне разумная и общеизвестная идея. Не столь очевидно выдвинутое Кауффманом заманчивое предположение о том, что подобное расширение может подчиняться общим законам, последствия которых прямо противоположны знаменитому Второму Закону Термодинамики. По сути Второй Закон утверждает, что с течением времени термодинамическая система становится проще; все интересные структуры «размазываются» по пространству и исчезают. Напротив, предположение Кауффмана говорит о том, что биосфера расширяется в пространство смежных возможностей с максимально возможной скоростью, при которой биологическая система сохраняет свою целостность. В биологии инновации происходят настолько быстро, насколько это возможно .

Более того, Кауффман обобщает эту идею на случай произвольной системы, состоящей из «автономных агентов». Автономный агент — это обобщенная жизненная форма, обладающая двумя характерными свойствами: она умеет размножаться и способна выполнить хотя бы один термодинамический рабочий цикл. В ходе рабочего цикла система совершает некоторую работу и возвращается в исходное состояние, после чего процесс можно повторить. Иначе говоря, система забирает энергию у окружающей среды и преобразует ее в работу, причем таким образом, что по окончании цикла возвращается в исходное состояние.

Человек, как и тигр, является автономным агентом. А огонь нет, потому что он распространяется за счет горючих материалов, оказавшихся поблизости, но не совершает рабочий цикл . Он превращает химическую энергию в тепло, но не может повторно сжечь то, что уже сгорело.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Терри Пратчетт читать все книги автора по порядку

Терри Пратчетт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Наука Плоского Мира II: Земной шар отзывы


Отзывы читателей о книге Наука Плоского Мира II: Земной шар, автор: Терри Пратчетт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x