Эдвин Эбботт - Флатландия. Сферландия

Тут можно читать онлайн Эдвин Эбботт - Флатландия. Сферландия - бесплатно ознакомительный отрывок. Жанр: Научная Фантастика, издательство Мир, год 1976. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Эдвин Эбботт - Флатландия. Сферландия краткое содержание

Флатландия. Сферландия - описание и краткое содержание, автор Эдвин Эбботт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях.
Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.

Флатландия. Сферландия - читать онлайн бесплатно ознакомительный отрывок

Флатландия. Сферландия - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Эдвин Эбботт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

— Почему у гиперквадрата двенадцать граничных линии? — спросил я. Вопрос был задан с умыслом: мне хотелось проверить, повторяет ли мой сын сведения, почерпнутые им в книге своего прадеда, или ему удалось до конца разобраться в прочитанном и он сумеет привести аргументы, подтверждающие правильность высказанных им утверждений.

— В этом нетрудно убедиться, — последовал ответ. — У квадрата в исходном положении имеются четыре граничные линии (его стороны) и столько же граничных линий в конечном положении. Таким образом, восемь граничных линий мы уже насчитали. Кроме того, у квадрата имеются четыре вершины, каждая из которых при перемещении квадрата вдоль третьего направления опишет по одной граничной линии. Следовательно, общее число граничных линий у трехмерного тела, называемого гиперквадратом, или кубом, равно двенадцати.

— Да, у куба двенадцать ребер, как принято называть граничные линии в Трехмерии, — вставил я.

— Но самое замечательное, — продолжал мой сын, — заключается в том, что куб ограничен плоскими фигурами, квадратами. Всего таких квадратов шесть, причем каждая точка, лежащая внутри любого из шести квадратов, принадлежит наружной поверхности куба. Нам, флатландцам, трудно представить себе, что точка, лежащая внутри квадрата, в то же время может принадлежать наружной поверхности трехмерного тела, но тем не менее это действительно так. Таким образом, у куба имеется шесть вершин, двенадцать ребер и шесть граней, все точки которых, в том числе и внутренние, принадлежат его наружной поверхности.

— Ну что же, с твоими рассуждениями нельзя не согласиться, — снова прервал я сына. — Однако теперь ничто не мешает нам продвинуться еще на одни шаг вперед и мысленно представить себе то, что получится, если мы вздумаем сдвинуть куб вдоль четвертого направления, перпендикулярного трем первым.

— Получится четырехмерное тело, — сказал мой сын, — которое можно было бы назвать гиперкубом. Разумеется, мы не можем представить его себе наглядно.

— Более того, даже трехмерные существа не могли бы представить себе гиперкуб наглядно. Им не оставалось бы ничего другого, как прибегнуть к умозаключениям и выводить свойства куба путем абстрактных рассуждений — так же, как мы рассуждаем о кубе, будучи не в силах представить себе его наглядно. Позволительно спросить, какими элементами ограничен такой гиперкуб?

— Прежде всего ясно, что у гиперкуба шестнадцать вершин, поскольку у куба имеется восемь вершин в исходном и столько же вершин в конечном положении. Восемь и восемь как раз дает шестнадцать вершин.

— А сколько у гиперкуба ребер?

— Тридцать два.

— Почему?

— У куба в исходном положении двенадцать ребер, и столько же ребер у куба в конечном положении. Таким образом, двадцать четыре ребра мы уже насчитали. Кроме того, каждая из восьми вершин куба, двигаясь, опишет отрезок прямой, который также служит ребром гиперкуба. Следовательно, всего у гиперкуба имеется тридцать два ребра.

— А сколько у гиперкуба плоских граней?

— Двадцать четыре: шесть граней у куба в исходном положении, еще шесть — у куба в конечном положении, и каждое из двенадцати ребер при движении также заметает по одной грани. Вот всего и набирается двадцать четыре грани.

— Ты перечислил все элементы гиперкуба?

— Нет, самое главное впереди. Гиперкуб ограничен восемью кубами. Каждая из граней исходного куба при движении породила по одному новому кубу. Вместе с кубом в исходном и кубом в конечном положении мы получаем всего восемь кубических граней. Таким образом, гиперкуб ограничен восемью кубами, все точки которых, в том числе и внутренние, лежат на наружной поверхности гипертела. Разумеется, представить себе наглядно, как это происходит, мы не в состоянии.

— Трехмерные существа также не в силах представить себе такую картину.

— Мы вполне могли бы продолжить наши рассуждения, — заметил мой сын, — и заставить гиперкуб перемещаться вдоль пятого направления, но какое тело при этом получится, представить себе даже мысленно довольно трудно.

— Почему? — возразил я. — Мы получим пятимерное тело, обладающее весьма правильным строением, с тридцатью двумя вершинами, восемьюдесятью ребрами, восемьюдесятью плоскими, сорока кубическими и десятью гиперкубическими гранями. Правда, я не могу не согласиться с тем, что чем дальше, тем сложнее будут получаться гипертела.

Мы оба замолчали и погрузились в размышления. Я был горд своим сыном, который так хорошо разбирался в многомерной геометрии — отрасли науки, которой занимались многие члены нашего семейства. Занятие многомерной геометрией стало своего рода семенной традицией в честь нашего великого предка, замечательного Квадрата.

Мой сын первым нарушил молчание:

— В настоящее время мы не можем ответить на вопрос, является ли все это чистой гипотезой, игрой разума, или третье измерение действительно существует. Посетила ли моего прадеда Сфера или весь рассказ о ее визите от начала до конца был плодом его фантазии?

Тогда мы еще не знали, что ответ на этот вопрос будет дан очень скоро.

8. ВОЗВРАЩЕНИЕ СФЕРЫ

Часы пробили полночь, и великий миг, которого каждый год ожидают с нетерпением, настал. Может быть, вам покажется странным, что моя семья в новогоднюю ночь не собралась в тесном кругу у очага. Дело в том, что мои домочадцы, следуя примеру детей, решили лечь спать пораньше. Поэтому мы сдвинули торжество на несколько часов и уже успели отпраздновать встречу Нового года. По обычаю, мы отведали окружности на масле — блюдо, считавшееся большим лакомством у детей, которое с удовольствием ели и взрослые. Затем я рассказал сказку, так что, по нашему мнению, встреча Нового года прошла вполне удачно. Что же касается детей, то для них это был настоящий праздник.

Разумеется, мы, взрослые, могли бы собраться в полночь еще раз, но заранее условились не делать этого. Ведь момент, когда Новый год сменяет старый, выбран совершенно произвольно и зависит лишь от принятого у нас способа измерения времени и нашего летосчисления. Никаких перемен для того, чтобы выделять этот момент времени среди других или приписывать ему особое значение, в природе не существует.

Итак, по известным теперь вам причинам мои домочадцы разошлись из-за стола, а я остался, чтобы посидеть у очага и побеседовать со своим старшим сыном о третьем измерении. И тут это случилось. Я хочу сказать, что мне вдруг послышался какой-то странный звук, шорох или тихое гудение. Откуда он доносился, я не мог никак понять и вопросительно посмотрел на сына.

— Тебе что-нибудь послышалось? — сказал он.

— Да, но что это? — спросил я.

— Трудно сказать. Не понимаю, откуда доносится звук.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эдвин Эбботт читать все книги автора по порядку

Эдвин Эбботт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Флатландия. Сферландия отзывы


Отзывы читателей о книге Флатландия. Сферландия, автор: Эдвин Эбботт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x