Эдвин Эбботт - Флатландия. Сферландия
- Название:Флатландия. Сферландия
- Автор:
- Жанр:
- Издательство:Мир
- Год:1976
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эдвин Эбботт - Флатландия. Сферландия краткое содержание
Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Флатландия. Сферландия - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Аналогичным образом можно построить гиперцилиндр с двумя цилиндрическими основаниями. Часть боковой поверхности гиперцилиндра состоит из двух цилиндров, соединяющих концы цилиндрических оснований, поэтому всю фигуру можно рассматривать как гиперцилиндр двумя способами. Из четырех цилиндров можно выбрать четыре элемента, образующие параллелограмм, а остальную часть боковой границы можно построить, двигая этот параллелограмм параллельно самому себе. При этом его вершины будут описывать основания цилиндров. Поскольку цилиндры можно получить аналогичным способом, двигая плоскую кривую параллельно самой себе вокруг любого из параллелограммов, то параллелограмм и замкнутая плоская кривая позволяют получить весь гиперцилиндр. При построении одной его части параллелограмм служит производящим элементом, а замкнутая плоская кривая — направляющей, при получении другой части роли элементов меняются.
Таким образом, гиперпризму, основаниями которой служат призмы, и гиперцилиндр с цилиндрическими основаниями можно рассматривать как частные случаи некоторого класса гипертел, допускающего следующие описания. Расположим два многоугольника, две замкнутые плоские кривые или многоугольник и плоскую кривую так, чтобы они пересекались, но не лежали в одном 3-пространстве. Их плоскости будут пересекаться лишь в той точке, где пересекаются сами кривые. Один многоугольник или одну кривую начнем двигать параллельно себе вокруг другой. При этом мы получим трехмерную фигуру в форме кольца (причем не только наружную поверхность, но и все внутренние точки фигуры). Двигая другой многоугольник или кривую вокруг первого, мы точно таким же образом получим вторую фигуру в форме кольца. Эти две кольцеобразные фигуры плотно примыкают друг к другу и образуют границу гипертела, внутри которой заключена конечная часть четырехмерного пространства. Такое гипертело можно назвать двойной призмой, призмоцилиндром или двойным цилиндром в зависимости от того, что мы выбрали вначале: два многоугольника, многоугольник и кривую или две кривые. Если плоскости двух производящих многоугольников абсолютно перпендикулярны, то мы получим прямую двойную призму. Аналогично можно получить и прямые фигуры остальных двух типов.
Если любую часть границы отделить от остальной и провести разрез вдоль одного из производящих элементов, то оставшаяся часть границы развернется в одном 3-пространстве, аналогичном нашему трехмерному пространству. Если плоскости двух производящих элементов абсолютно перпендикулярны, то каждая часть границы при развертывании в 3-пространстве превращается в прямую призму или в прямой цилиндр. В этом случае исходные фигуры можно описать иначе. Например, для того чтобы построить прямую двойную призму, достаточно взять две прямые призмы, выбрав их так, чтобы высота каждой из них совпадала с периметром другой призмы. Перегнув их относительно друг друга, мы можем совместить все соответствующие грани и получить трехмерное тело, внутри которого будет заключена конечная часть четырехмерного пространства. Аналогично можно построить прямой призмоцилиндр или прямой двойной цилиндр, взяв в одном случае призму и цилиндр, а в другом два цилиндра.
Если при построении двойного цилиндра мы возьмем два круговых цилиндра, то получившееся гипертело можно назвать цилиндром двойного вращения. Такой цилиндр будет вращаться двумя независимыми способами вокруг двух абсолютно перпендикулярных плоскостей. Плоскости вращения образованы осями двух цилиндров. Каждое из вращений происходит следующим образом. Одна из осей вращается по самой себе, а другая, совпадающая с осевой плоскостью, остается неподвижной.
Если один из цилиндров имеет очень маленький радиус по сравнению с радиусом другого цилиндра, в силу чего у второго цилиндра очень маленькая высота (один цилиндр напоминает веревку, а другой — колесо [13] Мы имеем в виду трехмерную веревку — такую, которую мы привыкли видеть в нашем пространстве. Все упоминавшиеся выше призмы и цилиндры трехмерные. Из них мы строим границу четырехмерных гипертел. С другой стороны, осевые пластинки и стержни, а также плоские и сферические колеса, о которых мы говорили на стр. 307, четырехмерные. Они обладают ненулевой толщиной по всем четырем измерениям.
), то получающееся при этом гипертело можно назвать дважды круговым колесом.
Изучая четырехмерное пространство, мы непременно встретимся с еще одной фигурой, а именно с гиперсферой, геометрическим местом точек, равноудаленных от некоторой данной точки. Иногда гиперсферой называют гипертело, то есть конечную часть гиперпространства, заключенную внутри этого геометрического места, а само геометрическое место называют границей, или гиперповерхностью, гиперсферы. При таком понимании гиперсфера (то есть граница) трехмерна, и на ней реализуется трехмерная эллиптическая неевклидова геометрий. Впрочем, это не удивительно, поскольку обычную сферическую геометрию можно рассматривать как двумерную эллиптическую неевклидову геометрию.
Сформулируем некоторые правила, позволяющие вычислять размеры гипертел в геометрии четырех измерений. Известны правила, позволяющие вычислять объем границы гипертел или части этой границы, а также гиперобъем, то есть величину части 4-пространства, заключенной внутри границы. В большинстве случаев эти правила выводятся так же, как соответствующие правила для площади и объема в обычной геометрии, или могут быть получены методами математического анализа. Все приводимые ниже правила применимы к правильным фигурам, и большинство из них допускает обобщение на некоторые другие классы фигур, но мы не будем здесь останавливаться на этом.
Гиперпризма и гиперцилиндр.
Боковой объем = площадь поверхности основания, умноженная на высоту.
Гиперобъем = объем основания, умноженный на высоту.
Гиперпирамида и гиперконус.
Боковой объем = площадь поверхности основания, умноженная на ⅓ высоты.
Гиперобъем = объем основания, умноженный на ¼ высоты.
Двойная призма, призмоцилиндр и двойной цилиндр.
Объем одной части границы = площадь, заключенная внутри производящего многоугольника или кривой, умноженная на периметр направляющей.
Полный объем границы равен сумме двух таких произведений. Можно сказать, что полный объем равен сумме двух произведений, каждое из которых образовано при умножении площади, заключенной внутри производящего многоугольника или кривой, на периметр другого многоугольника или кривой.
Гиперобъем = произведение площадей, заключенных внутри производящих, многоугольников или кривых.
Читать дальшеИнтервал:
Закладка: