Александр Казанцев - Острее шпаги (Клокочущая пустота, Гиганты - 1)

Тут можно читать онлайн Александр Казанцев - Острее шпаги (Клокочущая пустота, Гиганты - 1) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Научная Фантастика. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Казанцев - Острее шпаги (Клокочущая пустота, Гиганты - 1) краткое содержание

Острее шпаги (Клокочущая пустота, Гиганты - 1) - описание и краткое содержание, автор Александр Казанцев, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Острее шпаги (Клокочущая пустота, Гиганты - 1) - читать онлайн бесплатно полную версию (весь текст целиком)

Острее шпаги (Клокочущая пустота, Гиганты - 1) - читать книгу онлайн бесплатно, автор Александр Казанцев
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

_______________

* x = m\2 - n\2; y = 2mn; z = m\2 + n\2. (Примеч. авт.)

- Простите, что я вступаю в ваш высоконаучный разговор, почтенные знатоки чисел, - вмешался звездочет, - но арабской науке действительно известны эти древние формулы, правда, в несколько другом написании. Однако, к сожалению, до нас не дошел их вывод. Впрочем, в том, что они дают верный результат, я имел, по воле аллаха, возможность убедиться всякий раз, когда их применял, подобно тому, как это делал сам Диофант.

Пьер Ферма нахмурился, пристально глядя на свои и написанные Декартом формулы:

- Они выводятся очень просто, почтенные господа, из тех самых выражений, которые позволили мне составить таблицу. - И Пьер Ферма показал, как удивительно простым способом можно получить эти древние формулы*.

_______________

* Примечание автора для особо интересующихся. Если положить a =

m + n; b = m - n, то x = ab = (m + n) (m - n) = m\2 - n\2; y = 2mn; z

= m\2 + n\2, что и было записано Декартом.

ТАБЛИЦА ПРОСТЕЙШИХ ПИФАГОРОВЫХ ТРОЕК

(см. прилагаемый рисунок: Ostree17)

(Цифры в скобках получаются после сокращения на общий множитель и равны цифрам столбца при b = 1.)

- Не могу отказать вам в математическом остроумии, но нахождение вывода старых формул не может подняться до значения самих этих формул. Так что я не вижу, к сожалению, смысла в вашей умственной расточительности ради повторения давно человечеством пройденного.

Пьер Ферма покраснел, потом побледнел, пронизывающе смотря на составленную им таблицу рядов, которую в эту минуту изучал арабский звездочет.

- Простите мне во имя аллаха, мои высокочтимые гости, что я рискую обратить ваше внимание на то, что в составленной молодым гостем таблице я вижу весьма примечательные особенности, которые, надо думать, он подметил и обосновал. Кроме того, можно увидеть, что тройки, вычисленные по древним формулам, не окажутся, как в таблице господина Пьера Ферма, простейшими числами. Произвольно задаваясь величинам m и n, мы получим после вычислений хаотические, беспорядочные, как россыпь разноцветных камней, значения всевозможных прямоугольных треугольников, отнюдь не способствующих выявлению законов их построения.

- Вы правы, уважаемый Мохаммед эль Кашти, таблица троек действительно дает возможность установить некоторые зависимости как в вертикальных рядах, так и в рядах, соседствующих по горизонтали. - И он познакомил слушателей с тем, что открыл*. По просьбе арабского ученого особенно остановился Пьер Ферма на выборе коэффициента a и b в своих формулах.

_______________

* Примечание автора для особо интересующихся. Вертикальные ряды

x представляют собой арифметические прогрессии с показателем = 2b.

Все значения сторон треугольников с возрастанием ряда изменяются по

арифметической прогрессии, показатель которой для y - постоянен и

равен 4, а для x и z увеличивается с порядковым номером ряда и

порядкового номера тройки в вертикальном ряду и равен 4 (b + i - 1),

где i - порядковый номер тройки в ряду.

- Вас интересует, уважаемый Мохаммед эль Кашти, случай, когда коэффициенты a и b содержат общий множитель v21? - И он показал с убедительной простотой, что в этом случае получающиеся тройки будут повторять все первые тройки соседних по горизонтали рядов*.

_______________

* Примечание автора для особо интересующихся. Если a = pv2e, b =

qv2e, то p и q могут быть и четными и нечетными, x = ab = 2pqe, y =

(p\2 - q\2) e; z = (p\2 + q\2) e, то есть p и q тождественны m и n

древних формул (см. пред. примеч.), x и y просто меняются местами, к

тому же, помноженные на e, не являются простейшими.

- Вы убедили меня, почтенный знаток и поэт чисел. Видит аллах, с каким благоговением я стараюсь вникнуть в найденные вами числа и мудро расставленные по клеткам таблицы, кажущейся мне поистине волшебной. Но я покажу почтенным господам, какие тайны хранит в себе эта простенькая таблица.

- Что же вы обнаружили в ней, уважаемый Мохаммед эль Кашти? Разве я не все понял в собственной работе?

- Конечно, не все, ибо все понятно лишь одному всемогущему аллаху! Но достаточно прикоснуться к математическому сокровищу, чтобы обнаружить в нем...

- Что же? Что? - нетерпеливо торопил арабского звездочета Пьер Ферма.

- Благословенное аллахом золотое сечение! 8 единиц рассекаются на 5 и 3, 13 - на 8 и 5! А эти цифры стоят в таблице поблизости, как и в орнаменте!*

_______________

* Примечание автора для особо интересующихся. Золотое сечение

было известно древним зодчим, но сформулировано Леонардо да Винчи.

Цифры 3, 5, 8, 13 совпадают с частью ряда Фибаначчи, помогающего

современным ученым объяснять ряд явлений природы (1, 1, 2. [3, 5, 8,

13,] 21, 34 и т. д.).

Декарт скептически пожал плечами и поморщился. Араб воскликнул:

- Видит аллах справедливый, что вы напрасно так холодны, господин Картезиус! В этой премудрой таблице египетских рядов, как в бездонном колодце, можно черпать сокровища знаний.

- Я не хочу отказывать древним в важных познаниях, но я не вижу причин искать закономерности построения треугольников, будучи не уверен в их практической ценности, поскольку величины сторон ограничены такой условностью, как целочисленность.

- О многочтимый господин Картезиус! Я с почтительным вниманием изучаю ваши латинские труды по философии, стараясь вникнуть в глубину ваших мыслей, но позвольте возразить вам, не оспаривая вашего права на высказанное мнение.

- Пожалуйста, прошу вас, почтенный Мохаммед эль Кашти.

- По вашему определению, господин Картезиус, человек начал существовать как человек, лишь обретя способность мыслить, а это произошло тогда, когда он стал считать по пальцам, определять, сколько плодов он сорвал, сколько дичи принес, сколько членов его семьи или племени должны его добычу разделить между собой. По-латыни, как вы знаете, "вычисление калькуляция" происходит от слова calculus, что означает "камешек", число камешков могло быть только целым. И в нашей жизни, начиная от числа людей, быков, кораблей, домов и окон в них, кончая числом звезд в созвездиях, все это только целые числа. Природа по воле аллаха не знает дробей.

- Но при чем тут закон Природы, созданной всевышним, и прямоугольные треугольники? - с вызовом спросил французский философ.

- Величайшая тайна творения, уважаемый мною господин Картезиус, как я верю и убежден, заключена в том, что первородный закон Природы и ее творца до необычайности прост, не менее прост, чем открытый Пифагором закон прямоугольного треугольника. И неспроста древние египтяне после разлива Нила вновь разбивали поля с помощью веревки с узлами через три, четыре и пять мер, натягивая ее на три колышка и получая очень точно необходимый им прямой угол. А как такие прямые углы нужны морякам, определяющим свое местонахождение по звездам, или нам, звездочетам, эти звезды изучающим? И кто возьмется сказать сейчас, как еще послужат людям сведенные в эту таблицу прямоугольные треугольники?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Казанцев читать все книги автора по порядку

Александр Казанцев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Острее шпаги (Клокочущая пустота, Гиганты - 1) отзывы


Отзывы читателей о книге Острее шпаги (Клокочущая пустота, Гиганты - 1), автор: Александр Казанцев. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x