Жюль Верн - С Земли на Луну прямым путем за 97 часов 20 минут. Вокруг Луны (сборник)
- Название:С Земли на Луну прямым путем за 97 часов 20 минут. Вокруг Луны (сборник)
- Автор:
- Жанр:
- Издательство:Литагент «Аргументы недели»5ef7d60f-c103-11e5-82e2-0cc47a5453d6
- Год:2014
- Город:Москва
- ISBN:978-5-905667-44-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Жюль Верн - С Земли на Луну прямым путем за 97 часов 20 минут. Вокруг Луны (сборник) краткое содержание
Вниманию читателей предлагаются два романа из трилогии Жюля Верна «Из пушки на Луну».
Действие первого романа – «С Земли на Луну» – переносит нас в XIX век. После окончания Гражданской войны в США одному из главных героев, председателю «Пушечного клуба», Импи Барбикену приходит в голову невиданная доселе идея: он предлагает, используя современные ему научные достижения, поставить разрушительную мощь оружия на пользу человечеству. По его дерзкому плану трое отчаянных исследователей, находясь в небольшой капсуле-снаряде, должны путем выстрела из специально построенной пушки преодолеть силу притяжения Земли и достигнуть естественного спутника Земли – Луны.
Во второй части книги – продолжение романа «С Земли на Луну» – роман «Вокруг Луны». В нем рассказывается о приключениях трех отважных путешественников, отправившихся в неизведанные ранее глубины космоса, чтобы достичь Луны. Но вскоре смельчаки получили весьма неприятное известие: по непонятной причине траектория снаряда изменилась, и достигнуть поверхности Луны теперь не представляется возможным. Храбрым первооткрывателям грозит опасность стать вечными обитателями лунной орбиты…
С Земли на Луну прямым путем за 97 часов 20 минут. Вокруг Луны (сборник) - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
– Ты хочешь сказать, – перебил Барбикен, – до той нейтральной точки, где силы земного и лунного притяжения одинаковы, потому что с этой точки, которая находится почти на девяти десятых всего расстояния между обеими планетами, снаряд полетит на Луну сам собой вследствие собственной тяжести.
– Ну да, именно это я и имел в виду, – сказал Мишель. – Но как же все-таки они вычислили эту скорость?
– Ничего нет легче.
– А ты сумел бы сам провести это вычисление?
– Ну разумеется. Мы с Николем вычислили бы эту скорость и сами, если бы справка обсерватории не избавила нас от этого труда.
– Подумать только, – вздохнул Мишель. – А я бы не мог решить этой задачи даже под страхом смертной казни.
– Потому что ты не знаешь алгебры, – спокойно ответил Барбикен.
– Эх вы, «иксоеды»! Вы, думаете, сказали: «Алгебра», и этим все объяснили!
– Мишель, – сказал Барбикен, – ты, надеюсь, не станешь отрицать, что нельзя ковать без молота и ли пахать без плуга?
– Не стану, конечно.
– Ну, так алгебра – такое же орудие, как соха или плуг, и орудие весьма полезное для тех, кто умеет с нею обращаться.
– Не может быть.
– Сущая правда.
– А ты согласен воспользоваться этим орудием тут же при мне? Если тебе, конечно, не скучно.
– Разумеется.
– И показать мне, как вычислить начальную скорость нашего снаряда?
– Да, дорогой друг. Приняв в расчет все известные условия задачи: расстояние от центра Земли до центра Луны, радиус Земли, массу Земли, массу Луны, я могу с точностью установить начальную скорость нашего снаряда, и при этом с помощью самой простой формулы.
– Какая же это формула?
– А вот увидишь. Но только я не стану вычеркивать кривой, описанной нашим снарядом между Луной и Землей, учитывая их относительное движение вокруг Солнца. Предположим, что обе планеты неподвижны. Этого будет совершенно достаточно.
– Почему же?
– Потому что именно так решаются задачи, называемые «задачами трех тел», интегральный же метод для решения таких задач еще недостаточно разработан.
– Скажите, пожалуйста, – насмешливо произнес Мишель Ардан, – стало быть, математики еще не сказали своего последнего слова!
– Ну, разумеется, нет, – ответил Барбикен.
– Ну что ж! Авось лунные жители довели интегральное исчисление до большего совершенства, чем вы! А кстати, что такое интегральное исчисление?
– Этот способ, противоположный дифференциальному исчислению…
– Благодарю покорно!
– Другими словами, это исчисление, дающее нам конечные величины, дифференциалы которых нам известны.
– Вот это по крайней мере понятно! – воскликнул Мишель с видом полного удовлетворения.
– А теперь, – сказал Барбикен, – дай мне кусочек бумаги, огрызок карандаша, и через полчаса я покажу тебе нужную формулу.
С этими словами Барбикен принялся за вычисления. Николь продолжал изучать в окно необозримые межпланетные пространства, предоставив Мишелю заботу о завтраке.
Не прошло и получаса, как Барбикен, подняв голову, показал Ардану бумажку, исписанную алгебраическими знаками, среди которых выделялась следующая формула:

– Что же это значит? – спросил Мишель.
– Это значит, – ответил Николь, – что одна вторая v в квадрате минус v нулевое в квадрате равно gr , помноженное на r , деленное на х , минус единица плюс m прим, деленное на m , умноженное на r , деленное на d минус х , минус r , деленное на d минус r …
– Икс плюс игрек на закорках у зета и верхом на р , – расхохотался Мишель. – И все это тебе понятно, капитан?
– Ничего нет понятнее.
– Ну еще бы! – сказал Мишель. – Да ведь это же ясно с первого взгляда; теперь мне больше ничего не требуется.
– Вечно ты издеваешься! – вмешался Барбикен. – Захотел алгебры, ну и получай.
– Пусть уж лучше меня повесят!
– В самом деле, – сказал Николь с видом знатока, читая формулу. – Мне кажется, эта формула совершенно правильна. Это интеграл уравнения действующих сил, и я не сомневаюсь, что она приведет к искомому результату!
– Но я тоже хочу хоть что-нибудь понять! – вскричал Мишель. – Я готов отдать за это десять лет жизни… Николя.
– Ну так послушай, – начал Барбикен. – Половина v квадрат минус v нулевое в квадрате – это формула, дающая нам полувариацию действующей силы.
– Ну допустим. А Николь тоже понимает, что это значит?
– Конечно, Мишель, – ответил капитан. – Все эти, кажущиеся тебе каббалистическими, знаки составляют собой простой, самый точный и логичный язык для тех, кто им владеет.
– И ты полагаешь, Николь, – сказал Мишель, – что при помощи таких иероглифов, еще более непонятных, чем египетские «ибисы», ты сможешь найти начальную скорость, которую следовало сообщить снаряду?
– Безусловно, – ответил Николь. – При помощи этой формулы я смогу даже сказать тебе, с какой скоростью летит снаряд в любой точке пространства.
– Честное слово?
– Честное слово.
– Подумать только, ты, значит, ученый не хуже нашего председателя!
– Нет, Мишель. Барбикен сделал как раз самое трудное. Он нашел уравнение, определяющее все условия задачи. Остальное – вопрос арифметики и требует только знания четырех правил.
– Ну это действительно пустяки! – ответил Мишель Ардан, хотя ни разу в жизни не одолел ни одной задачи на сложение и называл эти упражнения «китайскими головоломками, позволяющими получать бесконечно разнообразные итоги».
Барбикен, однако, уверял, что и Николь, поразмыслив, смог бы самостоятельно найти ту же формулу.
– Не знаю, – возразил Николь, – чем больше я ее изучаю, тем больше она меня восхищает.
– А теперь, – сказал Барбикен, обращаясь к своему невежественному другу, – слушай. Ты поймешь, что все эти буквы имеют определенные значения.
– Слушаю, – смиренно сказал Мишель.
– d означает расстояние между центрами Земли и Луны, – сказал Барбикен. – Эти точки нам нужны для вычисления сил притяжения.
– Понятно.
– r – радиус Земли.
– Радиус… Допустим.
– m – масса Земли, а m прим – это масса Луны. Эти величины приняты в формуле потому, что притяжение тел пропорционально их массам.
– Понимаю.
– g – сила тяжести, скорость, приобретаемая телом в течение секунды при падении на поверхность Земли. Ясно?
– Как божий день!
– Буквой х я обозначил то переменное расстояние, которое отделяет нас от центра Земли, а v – скорость снаряда при данном расстоянии.
– Прекрасно!
– Наконец, скорость снаряда по выходе из атмосферы обозначим v нулевое.
– Правильно, – сказал Николь, – до этой точки и следовало вычислять скорость, так как известно, что начальная скорость в полтора раза больше той, которую снаряд сохранил при выходе из атмосферы.
Читать дальшеИнтервал:
Закладка: