Терри Пратчетт - Наука плоского мира IV: Судный день
- Название:Наука плоского мира IV: Судный день
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2013
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Терри Пратчетт - Наука плоского мира IV: Судный день краткое содержание
Соблюдайте осторожность: книга может навсегда изменить ваши взгляды на Вселенную.
Наука плоского мира IV: Судный день - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Требуется некоторое усилие, чтобы привыкнуть к муравьиному мышлению, которое ограничивается внутренними свойствами пространства, однако без него современная космология попросту лишена смысла, так как гравитация, будучи переосмысленной в рамках общей теории относительности Эйнштейна, превратилась в кривизну пространства-времени, основанную на римановом обобщении замечательной теоремы Гаусса.
До этого момента мы понимали слово «кривизна» в достаточно широком смысле: как именно искривляется пространство. Теперь же нам придется быть более осмотрительными, так как с точки зрения муравья кривизна представляет собой более тонкое понятие, смысл которого немного отличается от того, что мы, вероятно, ожидаем. В частности, муравей, живущий на поверхности цилиндра, будет настаивать на том, что его Вселенная не искривлена. Возможно, с точки зрения внешнего наблюдателя цилиндр выглядит как свернутый лист бумаги, однако геометрия маленьких треугольников на поверхности цилиндра в точности совпадает с аналогичной геометрией на евклидовой плоскости. Доказательство: просто разверните бумагу. Длины и углы, измеренные внутри бумаги, остаются без изменений. Таким образом, муравей, живущий на поверхности цилиндра, будет считать его плоским.
Математики и космологи согласны с мнением муравья. Тем не менее, цилиндр в некотором отношении отличается от плоскости. Если муравей начинает движение в какой-нибудь точке цилиндра и движется, строго придерживаясь направления, которое кажется ему прямой линией, то спустя какое-то время он вернется в исходную точку. Его траектория опоясывает цилиндр и возвращается в начало пути. С прямыми на плоскости такого не бывает. Это топологическое различие, и гауссова кривизна не в состоянии его уловить.
Мы упомянули цилиндр не только потому, что он хорошо известен, но и из-за его двоюродного брата, который играет важную роль и называется плоским тором если что-то и можно назвать оксюмороном, то именно его, потому что тор выглядит как пончик с дыркой, а его кривизна очень приятна на вкус. Тем не менее, его название не лишено смысла. С точки зрения метрики пространство является плоским, не имеет кривизны; однако топологически оно представляет собой тор. Чтобы получить плоский тор, нужно мысленно склеить противоположные стороны квадрата, а квадрат имеет плоскую форму. Это построение аналогично склеиванию противоположных краев экрана в компьютерных играх стоит какому-нибудь монстру или кораблю инопланетян свалиться с одного края, как он тут же снова появляется в той же самой позиции на противоположной стороне. В программировании игр этот метод называется «свертыванием» [78] Wrap round прим. пер.
так это воспринимается на практике, хотя вы и не станете делать этого в прямом смысле, если, конечно, не хотите устроить бардак из разбитых экранов. С точки зрения топологии свертывание вертикальных краев превращает экран в цилиндр. Сворачивая горизонтальные края, мы соединяем два конца цилиндра и получаем тор. Теперь никаких краев нет, и пришельца не смогут сбежать.
Плоский тор это простейший пример более общего метода, применяемого топологами для создания сложных пространств из более простых. Возьмите одну или несколько простых фигур и склейте их, перечислив необходимые правила: куда присоединяется каждая часть. Это напоминает сборно-разборную мебель: целая куча деталей и перечень инструкций типа «вставьте полку A в гнездо B». Однако с точки зрения математики детали и список это все, что вам нужно: нет необходимости собирать мебель на практике. Вместо этого вы просто представляете себе, как бы она себя повела, если бы вы ее собрали.
До изобретения космических полетов мы находились в том же положении, что и муравей, когда дело касалось формы Земли. В отношении формы Вселенной мы находимся в этом положении до сих пор. Но, как и муравей, мы можем вычислить эту форму, сделав нужные наблюдения. Одних лишь наблюдений, тем не менее, недостаточно; нам нужно объяснить их в контексте непротиворечивой теории, касающейся общей природы нашего мира. Если муравей не знает, что он находится на поверхности, формула Гаусса ему мало чем поможет.
В настоящий момент роль такого контекста играет общая теория относительности, объясняющая гравитацию с позиции кривизны пространства-времени. В плоской области пространства-времени частицы движутся по прямой так же, как они бы двигались в ньютоновской физике при отсутствии внешних сил. Если же пространство-время искривлено, частицы движутся вдоль криволинейных траекторий, которые в ньютоновской физике были бы признаком действующий силы такой, как гравитация. Эйнштейн отказался от сил, но оставил искривление. В общей теории относительности массивное тело вроде звезды или планеты искривляет пространство-время; под влиянием этого ускорения а вовсе не из-за воздействия какой-либо внешней силы частицы отклоняются от прямолинейной траектории. Если вы хотите понять гравитацию, говорил Эйнштейн, вам нужно разобраться в геометрии Вселенной.
Когда теория относительности еще только начинала свой путь, специалисты в области космологии открыли подходящую форму Вселенной, которая отвечала требованиям релятивизма гиперсферу. Топологически она похожа на обычную сферу в том смысле, что является лишь поверхностью. У сферы есть два измерения чтобы указать на ней конкретную точку, достаточно двух чисел. Скажем, широты и долготы. У гиперсферы таких измерений три. Математики определяют гиперсферы с помощью геометрии координат. К сожалению, такая фигура не входит в число естественных обитателей привычного нам пространства, поэтому мы не можем сделать ее модель или нарисовать ее на картинке.
Это не просто сплошной шар, то есть сфера вместе со своей внутренностью. У сферы нет границ, а значит, их не должно быть и у гиперсферы. У Плоского Мира, к примеру, граница есть там заканчивается мир, а океаны переливаются через край. Но наш сферический мир устроен иначе у него нет края. Где бы вы ни стояли оглянитесь вокруг и увидите землю или океан. Муравей, путешествующий по своему сферическому миру, никогда не обнаружит то место, где заканчивается Вселенная. То же самое должно быть верно и в отношении гиперсферы. Однако у сплошного шара есть граница его поверхность. Муравей, способный по своему желанию перемещаться внутри шара так же, как мы перемещаемся в космическом пространстве, если на пути не попадается какое-нибудь препятствие столкнется с краем Вселенной, достигнув поверхности на противоположной стороне.
В данном случае нам достаточно знать о гиперсфере лишь то, что она является естественным аналогом сферы, но с одним дополнительным измерением. Чтобы представить более конкретный образ, можно подумать о том, как могла бы выглядеть сфера в воображении муравья, а затем добавить еще одно измерение именно так поступил во Флатландии А. Квадрат. Сфера состоит из двух полусфер, склеенных друг с другом вдоль экватора. Полусферу модно сплющить, превратив в плоский диск, то есть окружность + ее внутренность такая деформация будет непрерывной. Иначе говоря, тополог может представить сферу в виде двух дисков, склеенных по краю наподобие летающей тарелки. В случае трех измерений аналогом диска будет шар. Гиперсферу, таким образом, можно получить путем склеивания двух шаров. Проделать это с круглыми шарами в трехмерном пространстве вы не сможете, зато можно составить математическое правило, которое сопоставит каждой точке на поверхности одного шара соответствующую точку на поверхности другого. Затем мы сделаем вид, что эти точки совпадают почти так же, как мы «склеиваем» края квадрата, чтобы получить плоский тор.
Читать дальшеИнтервал:
Закладка: