Array Коллектив авторов - Политическая наука №1 / 2018

Тут можно читать онлайн Array Коллектив авторов - Политическая наука №1 / 2018 - бесплатно ознакомительный отрывок. Жанр: sociology-book. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Array Коллектив авторов - Политическая наука №1 / 2018 краткое содержание

Политическая наука №1 / 2018 - описание и краткое содержание, автор Array Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Тема нынешнего номера – будущее политической науки. Разумеется, редакция стремилась учесть все точки зрения, в том числе и расходящиеся с диагнозом Р. Таагеперы. Разброс мнений очень велик. Возможны оптимистические оценки: тренды развития политической науки вполне ясны, а их продолжение оправданно.
Есть аргументы противоположного рода, акцентирующие пороки политической науки в том виде, как она сложилась в современном мире. Можно давать дифференцированные оценки, учитывать большое разнообразие полученных результатов и в различных дисциплинах, и в национальных традициях, и в отдельных университетах и научных школах. Важно, однако, не только констатировать положение дел, но и обсудить характер динамики. Находимся ли мы на возвышающем тренде или нас ждет кризис? Являются ли нынешние наши усилия всего лишь эпигонской эксплуатацией того, что было заложено десятилетия назад? Или они закладывают основы для новых прорывов научной мысли?

Политическая наука №1 / 2018 - читать онлайн бесплатно ознакомительный отрывок

Политическая наука №1 / 2018 - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Array Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Следуя примеру Дойча, я обратился к изучению некоторых взаимосвязей, которые можно считать своего рода законами человеческой активности. Однако мой подход, который я принес с собой из физики, не был подхвачен коллегами, а скорее вызвал сопротивление. Вот почему премия Карла Дойча – приятный сюрприз для меня. Она означает, что я могу еще активнее заняться реализацией своей второй мечты – превращением социальных исследований в настоящую науку. Не внедрять математический аппарат, как порой превратно полагают, а продвигать логические модели. Но сначала немного слов о том, как я обратился к социальным исследованиям.

Как я занялся социальными науками

Однажды, когда мне было одиннадцать лет и я пас коров во время Второй мировой войны, мне подумалось вот что. Представьте, что сто солдат противостоят пятидесяти солдатам в открытом поле. Кто угодно может застрелить кого угодно из противоположного лагеря. Предположим, что их орудия и навыки равны. Сколько из 100 останется в живых, после того как 50 других будут уничтожены? Я подозревал, что потери превосходящей силы будут довольно малы. Я проделал некоторые расчеты в уме, но они оказались слишком сложными, а у меня с собой не было бумаги. Поэтому мне пришлось сдаться. Однако это означало, что в глубине души у меня созрело стремление использовать количественные логические модели для анализа социальных проблем.

Много позже я вспомнил эту задачу. Я быстро составил систему двух дифференциальных уравнений и решил их. Результат – целых 87 из 100 выживут. И что же, опубликовал ли я этот результат? Нет, не тут‐то было. Некий Ланчестер уже разработал эти уравнения в 1916 г., т.е. задолго до моего рождения [Lanchester, 1956].

Подобно Карлу Дойчу, мы с семьей бежали от тоталитарного режима в Восточной Европе. В конце концов я оказался в Северной Америке. По дороге я окончил среднюю школу в городе Марракеше (Марокко). Степень бакалавра ядерной физики я получил в Университете Торонто, а степень доктора физических наук – в Университете Делавера. Я публиковался в области ядерной физики и физики твердых тел [Taagepera, Nurmia, 1961; Taagepera, Storey, McNeill, 1961; Taagepera, Williams, 1966], но больше работал с текстильными волокнами в промышленной лаборатории (Pioneering Laboratory, DuPont de Nemours Experimental Station). Однако меня по-прежнему волновало то, что случилось с моей семьей и моей страной в ходе коллизий мировой политики. Поэтому я стал посещать вечерние курсы по политологии и в конце концов получил степень магистра международных отношений.

Во время обучения я обратил внимание на так называемый кубический закон выборов в англосаксонских странах. Это отношение применимо к двум основным партиям в выборах по мажоритарной системе относительного большинства с одномандатными округами. Оно отражает тот факт, что большая партия имеет изрядный бонус – ее доля мест больше, чем доля голосов. Но насколько больше? Просто сказать «больше голосов, больше мест» – это примитивная наука. Направления изменения недостаточно. Чтобы считаться наукой, мы должны делать взаимосвязи количественными. Это означает, что мы должны задаться вопросом о том, насколько большую долю мест получит партия с заданной долей голосов.

Кубический закон выборов это и делает. Он соединяет отношение мест двух партий, А и В, и отношение их голосов. Отношение мест примерно равно кубу отношения голосов S A/S B =( V A/V B ) 3. Например, если проценты голосов близки к 60:40, то так называемый кубический закон говорит, что проценты мест будут различаться как 77:23.

Эта взаимосвязь нелинейна. Она кривообразна, причем довольно сложным образом, что навязано ее логикой. Почему я обращаю на это внимание? Потому что слишком много социальных исследователей, видимо, верят, что все количественные взаимосвязи линейны. Никто из них не верит в плоскую Землю, но они верят в прямые линии. Суровая реальность состоит в том, что линейные взаимосвязи очень редки в естественных науках, и не говорите мне, что социальные взаимосвязи проще. Вот где социальные науки производят много мусора, создавая множество призрачных линейных взаимосвязей.

Но вернемся к так называемому кубическому закону. Это не был на самом деле закон, а всего лишь эмпирическая закономерность. Чтобы квалифицировать ее как закон в строгом научном смысле, мы должны также иметь обоснование, почему взаимосвязь должна иметь ту форму, которую имеет, почему она не может быть никакой другой формы. Вот что меня озадачивало. И ответ был найден.

Закон сокращения меньшинства

Чтобы объяснить феномен, попытайтесь поместить его в более широкий контекст. Здесь взаимосвязь необязательно кубическая. Результат зависит от общего количества мест. Действительно, там, где на кону только одно место, как на президентских выборах, отношение голосов 60:40 приводит к отношению мест, равному не 77:23, а 100:0.

Позвольте, могут воскликнуть некоторые политологи, неужели вы, глупые физики, не знаете, что президентские и парламентские выборы – это совершенно разного рода вещи? Вы не можете поместить их в одну модель. Я встречаю такие заблуждения снова и снова, и это мешает политологии стать наукой. О да, я могу применять одну и ту же модель к парламентским и президентским выборам. Если бы я ошибался, то количественная логическая модель просто бы не работала, но мое расширение кубического закона работает. Это подтверждает, что в некоторых отношениях президентские выборы на основе относительного большинства (by plurality) – лишь предельный случай парламентских выборов по тем же правилам относительного большинства в одномандатных округах 4 4 По некоторым другим аспектам президентские выборы отличаются от парламентских, потому что экстремальные случаи всегда необычны. Одной из целей Шугарта и Таагеперы [Shugart, Taagepera, 2017] является определение количественных аспектов, по которым можно выяснить, где и как начинаются отличия президентских выборов от парламентских. . Позднее я опубликовал свою модель в виде «уравнения мест и голосов» [Taagepera, 1973]:

Здесь V общее количество голосов S общее количество мест Сейчас я называю - фото 1

Здесь V – общее количество голосов, S – общее количество мест. Сейчас я называю эту модель законом сокращения меньшинства, потому что она может применяться более широко, за пределами выборов. Например, она описывает соотношение женщин и мужчин среди ассистентов и профессоров [Taagepera, 1994]. Рассмотренный под другим углом, этот закон также создает паттерн, по которому Европейский союз распределил места в Европейском парламенте между странами [Taagepera, Hosli, 2006].

Закон кубического корня размеров ассамблей

Сокращение меньшинства выражается в так называемом кубическом законе, когда количество мест в ассамблее составляет кубический корень количества избирателей, соответствующего численности населения. К своему удивлению, я нашел, что это так в большинстве демократических стран. Путем проб и ошибок страны обнаружили, что кубический корень численности населения – это наиболее эффективный размер законодательного собрания. То есть страна с 8 миллионами населения обычно имеет представительное собрание из 200 человек, так как 200 х 200 х 200 = 8 миллионов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Array Коллектив авторов читать все книги автора по порядку

Array Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Политическая наука №1 / 2018 отзывы


Отзывы читателей о книге Политическая наука №1 / 2018, автор: Array Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x