Андрей Павлов - Геометрия: Планиметрия в тезисах и решениях. 9 класс
- Название:Геометрия: Планиметрия в тезисах и решениях. 9 класс
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Андрей Павлов - Геометрия: Планиметрия в тезисах и решениях. 9 класс краткое содержание
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.
Материалы пособия соответствуют учебной программе школьного курса геометрии.
Для учителей и учащихся 9-х классов.
Геометрия: Планиметрия в тезисах и решениях. 9 класс - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Билет № 16
1. Касательная к окружности, ее свойство (с доказательством).
2. Формулы площади треугольника и трапеции (без вывода).
3. Один из углов прямоугольного треугольника равен 30°, а сумма гипотенузы и меньшего катета равна 36 см. Найдите стороны треугольника.
4. Через вершину С параллелограмма ABCD проведена прямая HP так, что точка С лежит между точками Н и Р, которые принадлежат прямым АВ и AD соответственно:
а) докажите, что BH ? DP = ВС ? CD;
б) найдите косинус угла CDP, если синус угла НВС = 3/5.
5. Через центр квадрата ABCD проведены две взаимно перпендикулярные прямые, каждая из которых пересекает противоположные стороны квадрата. Докажите, что отрезки этих прямых, заключенные внутри квадрата, равны между собой.
Билет № 17
1. Свойство биссектрисы треугольника (с доказательством).
2. Прямая, обратная, противоположная и обратная к противоположной теоремы. Сущность метода доказательства от противного.
3. Найдите углы правильного десятиугольника.
4. Даны точки М(0; 4), Р (2; 1), К (2; -2), Т (0; -5):
а) докажите, что четырёхугольник МРКТ – трапеция;
б) равны ли углы МРК и РКT?
5. Из вершины М тупого угла параллелограмма MNKP проведены перпендикуляры МН1 и МН2 к прямым NK и КР. Найдите углы параллелограмма, если угол Н1МН2 = 70°.
Билет № 18
1. Свойство точки пересечения медиан (с доказательством).
2. Теорема о пропорциональных отрезках (без доказательства).
3. BD является высотой равнобедренного треугольника ABC (АВ = ВС); угол ABD = 17°, AD = 9 см. Найдите углы DВС, ABC и основание АС.
4. В прямоугольнике МНРК диагонали пересекаются в точке О, РК = 2, угол МОК = 120°. Вычислите скалярное произведение векторов.
5. В треугольнике ABC АВ = 4,2 см, АС = 2,7 см, длина ВС выражается целым числом. Найдите её.
§ 3. Экзаменационный комплект № 3 (углубленный уровень)
Билет № 1
1. Признаки равенства треугольников.
2. Соотношение между вписанным и центральным углами в окружности, опирающимися на одну дугу.
3. В параллелограмме ABCD угол BCD равен 60°, длина стороны АВ равна а. Биссектриса угла BCD пересекает сторону AD в точке N. Найдите площадь треугольника NCD.
4. Дан правильный 30-угольник A1A2...A30 с центром О. Найдите угол между прямыми ОА3 и А1А4.
Билет № 2
1. Свойства равнобедренного треугольника.
2. Докажите, что если через произвольную точку S провести две прямые, пересекающие окружность в точках А, В и С, D соответственно, то AS ? BS = CS ? DS.
3. Квадрат со стороной 3 см срезан по углам так, что образовался правильный восьмиугольник. Найдите сторону восьмиугольника.
4. Найдите площадь равнобедренной трапеции, у которой высота равна 10, а диагонали взаимно перпендикулярны.
Билет № 3
1. Признаки равенства прямоугольных треугольников.
2. Окружность и круг. Длина окружности и площадь круга. Площадь кругового сектора и сегмента.
3. Сколько сторон имеет выпуклый многоугольник, у которого все углы равны, если сумма его внешних углов с одним из внутренних равна 468°?
4. Докажите, что в параллелограмме ABCD расстояния от любой точки диагонали АС до прямых ВС и CD обратно пропорциональны длинам этих сторон.
Билет № 4
1. Геометрическое место центра описанной около треугольника окружности.
2. Сумма углов выпуклого n-угольника.
3. Стороны прямоугольника равны а и b. На стороне а, как на диаметре, построена окружность. На какие отрезки окружность делит диагональ прямоугольника?
4. В треугольнике ABC на стороне ВС взята точка М так, что MB = МС, а на стороне АС взята точка К так, что АК = 3 ? КС. Отрезки ВК и AM пересекаются в точке О. Найдите AO/AM.
Билет № 5
1. Признаки подобия треугольников.
2. Многоугольники. Правильные многоугольники. Величина угла в правильном n-угольнике.
3. В параллелограмме с периметром 32 см проведены диагонали. Разность между периметрами двух смежных треугольников равна 8 см. Найдите длины сторон параллелограмма.
4. Точка находится внутри круга радиуса 6 и делит проходящую через неё хорду на отрезки длиной 5 и 4. Найдите расстояние от точки до окружности.
Билет № 6
1. Признаки параллельности прямых.
2. Теорема Пифагора.
3. Две окружности с радиусами R = 3 и r = 1 касаются внешним образом. Найдите расстояния от точки касания окружностей до их общих касательных.
4. Найдите длину стороны квадрата, вписанного в равнобедренный треугольник с основанием а и боковой стороной b так, что две его вершины лежат на основании, а две другие вершины – на боковых сторонах.
Билет № 7
1. Докажите, что если параллельные прямые пересечены третьей прямой, то образовавшиеся внутренние накрест лежащие углы равны.
2. Выведите формулу R = abc/4S, где R – радиус описанной около треугольника окружности; а, b, с – длины его сторон, S – площадь треугольника.
3. Длины параллельных сторон трапеции равны 25 и 4, а длины боковых сторон равны 20 и 13. Найдите высоту трапеции.
4. Сторона квадрата, вписанного в окружность, отсекает сегмент, площадь которого (2? – 4) см2. Найдите периметр квадрата.
Билет № 8
1. Касательная к окружности и её свойство. Виды касания окружностей.
2. Формула Герона.
3. Основание равнобедренного треугольника равно 4?2, медиана боковой стороны равна 5. Найдите длину боковой стороны.
4. В прямоугольнике ABCD точки М и N – середины сторон АВ и ВС. Точка О – точка пересечения AN и DM. Найдите AO/ON.
Билет № 9
1. Свойства параллелограмма.
2. Свойство биссектрисы треугольника; длина биссектрисы.
3. Из точки D, лежащей на катете АС прямоугольного треугольника ABC, на гипотенузу СВ опущен перпендикуляр DE. Найдите длину CD, если СВ = 15, АВ = 9, СЕ = 4.
4. Диаметр окружности радиуса R является основанием правильного треугольника. Вычислите площадь той части треугольника, которая лежит вне данного круга.
Билет № 10
1. Свойства и признаки ромба, прямоугольника, квадрата.
2. Теорема синусов. Докажите, что отношение сторон треугольника к синусам противолежащих углов равно диаметру описанной окружности.
3. Основание треугольника равно ?2. Найдите длину отрезка прямой, параллельной основанию и делящей площадь треугольника пополам.
4. В равнобедренной трапеции даны основания а = 21, b = 9 и высота h = 8. Найдите длину описанной окружности.
Билет № 11
1. Теорема Фалеса и её обобщение (теорема о пропорциональных отрезках).
2. Геометрическое введение синуса, косинуса, тангенса и котангенса угла. Решение прямоугольных треугольников.
3. В пересечение двух равных кругов вписан ромб с диагоналями 12 и 6 см. Найдите радиус окружностей.
4. Высота ромба равна 12, а одна из его диагоналей равна 15. Найдите площадь ромба.
Читать дальшеИнтервал:
Закладка: