Эндрю Уэзеролл - Компьютерные сети. 5-е издание
- Название:Компьютерные сети. 5-е издание
- Автор:
- Жанр:
- Издательство:Питер
- Год:2011
- ISBN:9785446100682
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эндрю Уэзеролл - Компьютерные сети. 5-е издание краткое содержание
Компьютерные сети. 5-е издание - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
На рис. 2.8 изображен электромагнитный спектр. Радио, микроволновый, инфракрасный диапазоны, а также видимый свет могут быть использованы для передачи информации с помощью амплитудной, частотной или фазовой модуляции волн. Ультрафиолетовое, рентгеновское и гамма-излучения были бы даже лучше благодаря их высоким частотам, однако их сложно генерировать и модулировать, они плохо проходят сквозь здания и, кроме того, они опасны для всего живого. Диапазоны, перечисленные в нижней части рис. 2.8, представляют собой официальные названия ITU (International Telecommunication Union, международное телекоммуникационное сообщество), основанные на длинах волн. Так, например, низкочастотный диапазон (LF, Low Frequency) охватывает длины волн от 1 до 10 км (что приблизительно соответствует диапазону частот от 30 до 300 кГц). Сокращения LF, MF и HF обозначают Low Frequency (низкая частота), Medium Frequency (средняя частота) и High Frequency (высокая частота) соответственно. Очевидно, при назначении диапазонам названий никто не предполагал, что будут использоваться частоты выше 10 МГц, поэтому более высокие диапазоны получили названия VHF (very high frequency — очень высокая частота), UHF (ultrahigh frequency — ультравысокая частота, УВЧ), SHF (superhigh frequency — сверхвысокая частота, СВЧ), EHF (Extremely High Frequency — чрезвычайно высокая частота) и THF (Tremendously High Frequency — ужасно высокая частота). Выше последнего диапазона имена пока не придуманы, но если следовать традиции, появятся диапазоны Невероятно (Incredibly), Поразительно (Astonishingly) и Чудовищно (Prodigiously) высоких частот (ITF, ATF и PTF).
Рис. 2.8.Электромагнитный спектр и его применение в связи
Из выкладок Шеннона известно, что количество информации, которое может переносить сигнал, такой как электромагнитная волна, зависит от мощности приемника и пропорционально полосе пропускания. Из рис. 2.8 должно быть понятно, почему
разработчики сетей так любят оптоволоконную связь. В высокочастотном диапазоне для передачи данных доступна широкая полоса пропускания — шириной в несколько гигагерц, — особенно если речь идет об оптоволокне, которое находится в правой части нашей логарифмической шкалы. Например, рассмотрим 1,30-мк диапазон, изображенный на рис. 2.6; его ширина 0,17 мк. С помощью выражения (2.2) можно найти начальное и конечное значения частот диапазона, зная длину волн. Таким образом, диапазон составляет примерно 30 000 ГГц. При допустимом отношении «сигнал/шум» в 10 дБ это 300 Тбит/с.
Большинство систем связи используют относительно узкие полосы частот (то есть . Сигналы концентрируются в узкой полосе для эффективного использования спектра и достижения хорошей скорости передачи данных при достаточно мощной передаче. Однако иногда используются и широкие полосы. При этом возможны три варианта. Когда применяется расширенный спектр с перестройкой частоты, то передатчик изменяет частоту работы сотни раз в секунду. Этот метод очень популярен в военных системах связи, потому что такой сигнал тяжело перехватить и почти невозможно заглушить. Он также обладает хорошей защищенностью от многолучевого затухания и сосредоточенных помех, поскольку приемник не задерживается на искаженной частоте надолго, и разговор не прерывается. Устойчивость и надежность особенно важны в наиболее заполненных частях спектра, например в полосах ISM (industrial, scientific and medical band, промышленный, научный и медицинский диапазоны), которые мы вкратце рассмотрим. В коммерческих системах данная техника также применяется, например, в Bluetooth и старых версиях 802.11.
С историей изобретения метода перестройки частоты связан один курьез. Одним из его изобретателей была австрийская секс-богиня Хэди Ламмар (Hedy Lammar) — первая женщина, снявшаяся в кино в обнаженном виде (это был чешский фильм 1933 года под названием Extase). Ее первый муж занимался производством оружия и как-то раз рассказал Хэди, как легко блокируются радиосигналы управления торпедами. Когда вдруг обнаружилось, что он продает вооружение гитлеровской армии, Хэди была вне себя. Она переоделась горничной и сбежала из дома. Поехала в Голливуд, где продолжила свою актерскую карьеру. А в свободное от работы время взяла и изобрела метод перестройки частоты. Хэди мечтала хоть чем-нибудь помочь союзным войскам. В ее схеме использовалось 88 частот, по числу клавиш (и частот) на пианино. Вместе со своим другом, композитором Джорджем Антейлом (George Antheil), они запатентовали свое изобретение (патент № 2 292 387). К сожалению, Хэди не удалось убедить военно-морской флот США в том, что метод перестройки частот может иметь какое-то практическое значение, поэтому никаких гонораров за изобретение получено не было. Только через много лет после окончания срока действия патента метод передачи данных, придуманный киноактрисой и композитором, стал популярен.
Еще один метод, использующий широкую полосу частот, называется расширенным спектром с прямой последовательностью. Кодовая последовательность применяется для распределения сигнала данных по более широкой полосе частот. Этот метод широко используется в коммерческих системах, так как позволяет эффективно передавать несколько сигналов внутри одной полосы частот. Сигналам можно присваивать разные коды; этот метод называется CDMA (Code Division Multiple Access,
кодовое разделение каналов с множественным доступом). О нем мы поговорим чуть позже в этой главе. На рис. 2.9 показано, как данный метод отличается от метода с перестройкой частоты. Кстати, он лежит в основе мобильных телефонных сетей 3G, а также используется в системах GPS (Global Positioning System, глобальная система определения координат). Даже без назначения кодов расширенный спектр с прямой последовательностью, так же как и расширенный спектр с перестройкой частоты, устойчив к сосредоточенным помехам и многолучевому замиранию, так как теряется при этом только часть сигнала. Именно поэтому он применяется в старых беспроводных сетях 802.11b. Занимательную и подробную историю средств связи с расширенным спектром см. в книге (Scholtz, 1982).
Рис. 2.9.Расширенный спектр и передача данных по сверхширокой полосе пропускания
Третий метод передачи данных в широкой полосе называется UWB-коммуникациейили коммуникацией в ультрашироком диапазоне. Для пересылки информации отправляется последовательность коротких импульсов, изменяющих свое положение. Большое количество коротких импульсов формирует сигнал, распределенный по очень широкой полосе частот. Полоса пропускания UWB-коммуникации составляет минимум 500 МГц или минимум 20 % от значения центральной частоты соответствующей полосы частот. Рисунок 2.9 также иллюстрирует UWB-коммуникацию. С такой полосой пропускания возможна передача данных на очень высоких скоростях. А распределение по широкому диапазону частот позволяет сигналу выдерживать значительное количество относительно сильных помех со стороны других узкополосных сигналов. Также важно, что так как при передаче данных на короткое расстояние UWB-передатчик излучает на каждой конкретной частоте сигнал малой мощности, он не создает серьезных помех для этих узкополосных радиосигналов. Можно сказать, что по отношению к другим сигналам UWB-передача остается фоновой. Благодаря такому мирному существованию на свет появился новый вид сетей — PAN, Personal Area Network. Скорость передачи данных в персональной сети — до 1 Гбит/с. Нельзя сказать, однако, что это стало несомненным коммерческим успехом. UWB-коммуникацию можно применять для получения изображений объектов, находящихся за твердой преградой (земля, стены, тела людей или животных), а также в системах точного определения местоположения.
Читать дальшеИнтервал:
Закладка: