Никола Тесла - НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ.

Тут можно читать онлайн Никола Тесла - НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - бесплатно ознакомительный отрывок. Жанр: Прочая старинная литература. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Никола Тесла - НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. краткое содержание

НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - описание и краткое содержание, автор Никола Тесла, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - читать онлайн бесплатно ознакомительный отрывок

НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Никола Тесла
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Для того, чтобы свести к минимуму разрушение электрода, желательно, чтобы колебания были гармоничными, так как любые рывки ускоряют процесс разрушения. Электрод проработает дольше, если накаливание создается током или импульсами, получаемыми от высокочастотного генератора переменного. Колебания такого тока происходят более плавно, нежели импульсы, получаемые от катушки пробойного разряда. В последнем случае нет сомнений, что большинство повреждений происходят из-за сильных внезапных разрядов. Одной из причин потерь энергии в такой лампе является бомбардировка сферы. Когда разность потенциалов очень высока, молекулы испускаются с большой скоростью, они ударяются о стекло и обычно вызывают сильное свечение. Получается очень красивый эффект, но по экономическим соображениям его следует избегать или сводить к минимуму. В данном случае, бомбардировка сферы, как правило, не вызывает фосфоресценцию, и потери энергии от бомбардировки снижаются. Эти потери энергии в лампе очень сильно зависят от разности потенциалов импульсов и от электрической плотности на поверхности электрода. При использовании тока очень высокой частоты, потери энергии в результате бомбардировки существенно уменьшаются. Во-первых, потому, что для получения такого же количества работы требуется меньшая разность потенциалов. Во-вторых, потому, что вокруг электрода создается высоко электропроводная фотосфера. То же самое получилось бы, если электрод был бы намного больше, что равнозначно меньшей электрической плотности.

Но уменьшая разность потенциалов, или плотность разряда, мы получаем определенную выгоду, а именно: избегаем сильных возмущений, которые настолько сильно воздействуют на стекло, что это порой превосходит пределы его эластичности. Если частота будет достаточно высока, то потери энергии вследствие недостаточной эластичности стекла будут совершенно незначительны. Потери энергии, вызванные бомбардировкой сферы, можно уменьшить, если использовать два электрода вместо одного. В этом случае каждый из электродов может быть подсоединен к одной из клемм, либо, если предпочтение отдается использованию только одного провода, то один электрод может быть подсоединен к клемме, а другой заземлен, или подсоединен к изолированному телу с определенной площадью поверхности, например, к затенителю лампы. В последнем случае, если не применить некоторые дополнительные настройки, то один из электродов может светиться более интенсивно, чем другой.

Но в целом, мне представляется предпочтительным, при задействовании тока столь высокой частоты, использовать только один электрод и один токопроводящий провод. Я убежден, что для работы осветительных приборов ближайшего будущего не потребуется больше одного подводящего провода, и в любом случае, они не будут иметь внутренних проводов, поскольку необходимую энергию можно будет с успехом подавать через стекло. В экспериментальных лампах внутренний провод в большинстве случаев используется из соображений удобства, так как при применении конденсаторного покрытия (как, например, способом, показанным на рис. 22) возникают некоторые трудности при соединении частей, но этих трудностей не должно возникать, при промышленном производстве большого количества ламп. В противном случае энергия может передаваться через стекло, а также через провод, а при таких высоких частотах потери энергии очень малы. Такие осветительные приборы будут неизбежно требовать для своей работы очень высокой разности потенциалов, что в глазах практиков может иметь спорное будущее. На самом же деле, высокая разность потенциалов не вызывает возражений — по крайней мере если обеспечена надежная безопасность таких устройств.

Есть два пути достижения безопасности электрических приборов. Один — это использовать низкую разность потенциалов, другой — создать аппаратуру с такими параметрами, чтобы ее безопасность не зависела от используемого напряжения. Из двух путей, последний мне кажется лучшим потому, что в этом случае обеспечивается абсолютная безопасность, не зависящая от каких-либо стечений обстоятельств, когда использование даже низкого напряжения могло бы представлять опасность для жизни, или для имущества. Но практические условия требуют не только определения разумных размеров аппаратуры, они также требуют применения определенного типа энергии. Например, легко создать трансформатор, который бы работал от обычного генератора переменного тока низкого напряжения, и который мог бы вырабатывать напряжение, необходимое для работы фосфоресцирующей трубки с сильным вакуумом. При этом, несмотря на столь высокое напряжение, эта трубка абсолютно безопасна, поскольку электрический удар от нее не причинит никакого вреда. Однако такой трансформатор будет довольно дорогим, и по своей сути неэффективным. Более того, электрическая энергия, полученная от него, не может быть экономично использована для освещения. Экономика требует использования энергии в виде очень быстрых колебаний. Проблема получения света подобна проблеме воспроизведения колоколом звука высоких тонов, можно сказать даже звука, находящегося на грани восприятия человеком. Даже эти слова недостаточно экспрессивны, чтобы выразить, насколько удивительна чувствительность человеческого глаза. Мы можем выдавать мощные удары через длительные интервалы времени, затрачивая на это много энергии, и не получая при этом того, что хотим. Либо, мы можем воспроизвести и держать ноту путем частых мягких ударов, что уже будет ближе к искомому уровню затратам энергии. В получении света может быть только одно правило, в рамках рассмотренных здесь осветительных приборов — использовать ток самой высокой частоты, которую только можно получить, однако, возможности для получения и передачи импульсов такого типа, по крайней мере сейчас, сильно ограниченны. Как только мы решим использовать ток очень высокой частоты, обратный провод станет ненужным, и конструкции всех устройств упростятся. Используя очевидные возможности, мы получим такой же результат, как и при применении возвратного провода. Для этого достаточно подсоединить к лампе, или расположить в непосредственной близости от нее изолированное тело с определенной площадью поверхности. Конечно, поверхность должна быть тем меньше, чем больше используемая частота и разность потенциалов. Кроме того, это необходимо для увеличения экономичности лампы или другого устройства.

Этот план работы устройств сегодня был применен в нескольких случаях. Так, например, накаливание электрода происходило в результате обхвата лампы рукой, то при этом тело экспериментатора служило для усиления интенсивности действия. Использованная лампа была похожа на ту, что представлена на Рис. 19. Возбуждение катушки проводилось до небольшой разности потенциалов, не достаточной для того, чтобы довести электрод до раскаленного состояния, когда лампа висела на проводе, и недостаточной для того, чтобы выполнить эксперимент более подходящим способом. Электрод был сделан таким большим, чтобы прошло немало времени, прежде чем он раскалился в удерживаемой лампе. Конечно, контакт с лампой был совершенно необязателен. Используя довольно большую лампу с чрезвычайно маленьким электродом легко произвести регулировки таким образом, чтобы накал в лампе образовывался при простом приближении к ней экспериментатора на расстояние в несколько футов, и ослабевал при его удалении.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Никола Тесла читать все книги автора по порядку

Никола Тесла - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. отзывы


Отзывы читателей о книге НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ., автор: Никола Тесла. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x