Юрченко Борисович - Философия и логика времени
- Название:Философия и логика времени
- Автор:
- Жанр:
- Издательство:SPecialiST RePack
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Юрченко Борисович - Философия и логика времени краткое содержание
Философия и логика времени - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
или (3.5)
Тут можно задаться «детским» вопросом: нуль – это положительное или отрицательное число? Очевидно, и то, и другое. Или: ни то, ни другое. Для пространства Минковского это значит, что любая точка, из которой выводятся конуса прошлого и будущего, принадлежит обоим конусам: и прошлому, и будущему. Либо не принадлежит ни одному из них. И в какое же небытие проваливается эта точка? Она есть наше настоящее. Что происходит с нашим настоящим, ведь в пространстве Минковского оно оказывается не только t-подобной, но и s-подобной точкой. Пожалуй, эту точку вполне можно назвать сингулярной.
Предположим, что a , b – это физические события во времени, а отношение является причинным, т.е. временным, так что порядок означает: событие а предшествует во времени событию b. Если время t континуально, то согласно (3.2) имеется, по крайней мере, одно неопределенное событие x (потерянное звено) между любыми событиями в причинной цепи: , потому что имеет место временная последовательность: t(a) < t(x) < t(b). Это должно происходить всегда из-за несчетности C вопреки любой причинной плотности, установленной нами для реальности.
Но это делает наше полноценное описание и понимание реальности невозможным, поскольку наше представление о причинности тех или иных событий оказывается произвольным. Мы вполне можем жить в убеждении, что мука способна мгновенно превращаться в хлеб. Нас такое субъективное описание реальности не устраивает. Вернуть себе объективность, на которую мы полагаемся как в теории, так и на практике, можно лишь одним способом: признать, что время (а вместе с ним и пространство) должно быть квантовым (дискретным), но при этом не быть для наблюдателя отделимым (сепарабельным). Феномен несчетности должен быть тогда связан именно с неотделимостью: в «реальном» континууме невозможно чисто изолировать одну точку от другой, так чтобы у них не было общих точек в окрестности.
Лемма5. Континуальность = Дискретность + Неотделимость
Как это возможно? Для топологии эти свойства несовместимы, ибо дискретность изначально означает изолированность множества точек в пространстве, которое автоматически становится отделимым. Это вплотную подводит нас к вопросу о математической структуре времени, в котором кванты неизбежно сопряжены с неопределенностью. Предположим снова, что t(a) и t(b) составляют два разных момента временного континуума, в которых происходят эти события, и прогресс времени выражается отношением <. Тогда на стреле времени найдется бесконечное множество событий между a и b , так, что невозможно прийти пошагово из a в b . В античной философии этот феномен был известен как апории Зенона.
IV. Релятивистское время и эфир
Древнегреческий философ Зенон был родом из Элеи, и поэтому последователей его школы принято называть «элеатами» (другой Зенон родом из Кития стал основателем стоицизма). Сам Зенон был учеником Парменида, который первым в греческой философии заявил: «Бытие тождественно мышлению», т.е. выразил тот самый постулат, который нам необходим, чтобы избавить нас от событий, которые мы в принципе не способны понять. Его знаменитый современник Гераклит утверждал, что в мире нет покоя (настоящего), все находится в непрерывном изменении. Зенон, как последователь Парменида, придумал свои апории с целью показать иллюзорность мышления, которым мы ограничены. Из них следовало, что движение невозможно, все находится в покое (настоящем).
Эти апории хорошо известны. Самой популярной из них является, пожалуй, история Ахиллеса и черепахи. Эпический воин Ахиллес и символ медлительности в животном мире – черепаха стартуют в один и тот же момент времени, но при этом черепаха находится на некотором расстоянии S 1впереди героя Илиады. За то время, пока Ахиллес преодолевает этот отрезок, черепаха тоже успевает проползти некоторый новый отрезок пути S 2. Когда Ахиллес одолеет и его, черепаха опять отползет на расстояние S 3и т.д. Кажется, Ахиллесу никогда не догнать черепаху, поскольку это рассуждение в себе самом не предполагает принципиального конца.
Процитируем высказывания некоторых математиков об этой апории.
Г. Вейль [16]: Представим себе вычислительную машину, которая выполняла бы первую операцию за ½ минуты, вторую — за ¼ минуты, третью — за ⅛ минуты и т. д. Такая машина могла бы к концу первой минуты “пересчитать” весь натуральный ряд (написать, например, счетное число единиц). Ясно, что работа над конструкцией такой машины обречена на неудачу. Так почему же тело, вышедшее из точки А, достигает конца отрезка В, “отсчитав” бесконечное множество точек S 1 , S 2 ...S n ...?
Д. Гильберт и П. Бернайс [17]: Обычно этот парадокс пытаются обойти рассуждением о том, что сумма бесконечного числа этих временных интервалов все-таки сходится и, таким образом, дает конечный промежуток времени. Однако это рассуждение абсолютно не затрагивает один существенно парадоксальный момент, а именно парадокс, заключающийся в том, что некая бесконечная последовательность следующих друг за другом событий, завершенность которой мы не можем себе даже представить (не только физически, но хотя бы в принципе), на самом деле все-таки должна завершиться.
Н. Бурбаки [18]: Вопрос о бесконечной делимости пространства (бесспорно, поставленный еще ранними пифагорейцами) привёл, как известно, к значительным затруднениям в философии. От элеатов до Больцано и Кантора математики и философы не в силах были разрешить парадокс: как конечная величина может состоять из бесконечного числа точек, не имеющих размера?
Апории Зенона не являются логическими парадоксами в строгом смысле. Само слово «апория» (ἀπορία) в переводе с др. греческого означает затруднение, безвыходность . Но классический парадокс содержит в себе два взаимоисключающих высказывания. В символической логике он записывается формулой: , и читается как « А эквивалентно не- А », выражая логическую тождественность некоего утверждения и его отрицания. Апории же основываются на нашем интуитивном понимании континуальности (непрерывности) и дискретности (прерывности) и показывают, что эти понятия неразрывно связаны между собою, что, собственно, и создает апорию. В частности, они показывают, что наше восприятие времени (и пространства) содержит в себе какой-то логический изъян. Возможно, эта внутренняя противоречивость в восприятии времени, которое мы считаем и непрерывным, и дискретным, связана в нашем мышлении с доминантной асимметрией полушарий мозга, позволяющих создать двуликую нейролингвистическую реальность и соединить несоединимое, т.е. апорию следует относить к явлениям асимметрии.
Читать дальшеИнтервал:
Закладка: