Ричард Фейнман - 1. Современная наука о природе, законы механики

Тут можно читать онлайн Ричард Фейнман - 1. Современная наука о природе, законы механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая старинная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Ричард Фейнман - 1. Современная наука о природе, законы механики краткое содержание

1. Современная наука о природе, законы механики - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

1. Современная наука о природе, законы механики - читать онлайн бесплатно полную версию (весь текст целиком)

1. Современная наука о природе, законы механики - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Биология — настолько широкое поле деятельности, что есть уйма проблем, о которых мы даже не упоминаем; скажем, вопрос о том, как осуществляется зрение (что свет делает внут­ри глаза) или как работает ухо и т. д, (Как работает мысль, мы обсудим позже, когда будем говорить о психологии.)

Так вот, все эти вопросы, стоящие перед биологией, на самом деле для биолога отнюдь не главные, отнюдь не они лежат в основе жизни. Если мы их и поймем, нам все равно не понять сущности жизни. Вот вам пример: люди, изучающие нервы, понимают, что их работа очень нужна, ведь животных без нер­вов не бывает. Но жизнь без нервов возможна. У растений нет ни нервов, ни мышц, и все же они работают, живут (что одно и то же). Значит, самые фундаментальные проблемы биологии нужно искать глубже.

При этом мы установим, что у всех живых существ есть мно­го общих черт. Самое же общее между ними то, что они состоят из клеток, внутри каждой из которых действует сложный механизм химических превращений. В растительных клетках, например, есть механизм поглощения света и выработки саха­розы, которая потом в темноте поглощается, поддерживая жизнь растения. Когда животное поедает растение, сахароза порождает в животном цепь химических реакций, тесно связан­ных с фотосинтезом растений (и обратной цепочкой в тем­ноте).

В клетках живых организмов происходит множество хитро задуманных химических - фото 14

В клетках живых организмов происходит множество хитро задуманных химических реакций: одно соединение превращает­ся в другое, затем в третье, затем еще и еще. Фиг. 3.1 дает некое представление о гигантских усилиях, предпринятых в изу­чении биохимии; там сведены воедино наши знания о малой доле того множества цепочек реакций (может быть, примерно 1% общего количества), которые происходят в клетке.

Фиг. 3.1. Цикл Кребса.

Вы видите здесь ряд молекул, последовательно превращаю­щихся одна в другую,— цикл с довольно мелкими шагами. Это — цикл Кребса, или дыхательный цикл. Судя по изменениям в молекулах, каждое вещество и каждый шаг в цикле доволь­но просты. Но эти изменения относительно трудно воспроиз­водятся, лабораторным путем. Это открытие необыкновенной важности в биохимии. Дело вот в чем. Если есть два сходных вещества, то как раз их-то часто нельзя превратить друг в дру­га, потому что эти две формы обычно отделены энергетическим барьером, «перевалом». Ведь, желая перенести предмет на новое место на том же уровне по другую сторону перевала, вы сперва должны поднять его над перевалом. Это требует добавочной за­траты энергии. По той же причине многие реакции не происхо­дят, им не хватает так называемой энергии активации. Если вы хотите присоединить к химическому соединению лишний атом, то для того, чтобы он пристал куда надо, его следует придви­нуть вплотную, иначе нужная перестановка не произойдет, он лишь немного взбежит по «склону» и скатится обратно. Но если б вы могли, буквально повертев молекулу в руках, раз­двинуть ее атомы, ввести в образовавшуюся дыру ваш атом и затем закрыть отверстие, то вы бы миновали подъем, никакой зат­раты энергии не понадобилось бы и реакция прошла бы легче. Так вот, в клетках и впрямь существуют очень большие моле­кулы (куда больше, чем те, чьи изменения изображены на фиг. 3.1), которые как-то умеют расставить малые молекулы так, чтобы реакция протекала без труда. Они, эти большие сложные устройства, называются ферменты (или закваска; назвали их так потому, что обнаружили их при сбраживании сахара. Кста­ти, первые из реакций цикла Кребса были открыты именно при сбраживании). Реакции цикла идут только в присутствии ферментов.

Сам фермент состоит из другого вещества — белка. Молеку­лы ферментов велики и сложны. Все ферменты отличаются друг от друга, причем каждый предназначен для контроля некоторой определенной реакции. На фиг. 3.1 возле каждой реакции обозначены названия нужного фермента (а иногда один фер­мент контролирует и две реакции). Подчеркнем, что сам фер­мент в реакцию не вовлекается. Он не изменяется, его дело толь­ко передвинуть атом с одного места в другое. Передвинет в одной молекуле и готов уже заняться следующей. Совсем как станок на фабрике, причем должен иметься запас нужных атомов и возможность избавляться от ненужных. Возьмите, на­пример, водород: существуют ферменты, имеющие специальные ячейки для переноса водорода в любой химической реакции. Скажем, имеются три или четыре фермента, которые понижают количество водорода; они используются во многих местах цик­ла. Интересно, что механизм, высвобождающий водород в од­ном месте, придерживает этот атом, чтобы использовать его еще где-нибудь.

Важнейшая деталь цикла, приведенного на фиг. 3.1, это превращение ГДФ в ГТФ (гуаназиндифосфат в гуаназинтрифосфат), потому что во втором веществе — ГТФ — энергии намного больше, чем в первом. Подобно тому как в некоторых ферментах имеется «ящик» для переноса атомов водорода, бы­вают еще особые «ящики» для переноса энергии; в них входит трифосфатная группа. В ГТФ больше энергии, чем в ГДФ, и когда цикл идет в одну сторону, создаются молекулы с избыт­ком энергии; они могут привести в действие другие циклы, которым требуется энергия, например цикл сжатия мышцы. Мышца не сократится, если нет ГТФ. Можно поместить в воду мышечное волокно и добавить туда ГТФ, тогда волокно сокра­тится, превращая ГТФ в ГДФ (если только присутствуют нуж­ные ферменты). Таким образом, сокращение мышцы есть прев­ращение ГДФ в ГТФ; накопленный в течение дня ГТФ исполь­зуется в темноте для того, чтобы пустить весь цикл в обратную сторону. Как видите, ферменту все равно, в какую сторону идет реакция; если б это было не так, нарушался бы один из законов физики.

Есть и другой резон, по которому для биологии и других наук важна именно физика,— это техника эксперимента. Например, нарисованная биохимическая схема не была бы еще до сего времени известна, если бы за нею не стояли боль­шие достижения экспериментальной физики. Дело в том, что для анализа этих невообразимо сложных систем нет лучшего средства, нежели ставить метки на атомах, участвующих в реакции. Если ввести в цикл немного углекислоты с «зеленой меткой» на ней и посмотреть, где метка окажется через 3 сек, потом через 10 сек и т. д., то можно проследить течение всей реакции. Но как сделать «зеленую метку»? При помощи раз­личных изотопов. Напомним, что химические свойства атомов определяются числом электронов, а не массой ядра. Но в атоме углерода, к примеру, может быть либо шесть, либо семь нейт­ронов наряду с обязательными для углерода шестью протона­ми. В химическом отношении атомы С 12и С 13не отличаются, но по массе и ядерным свойствам они различны, а значит, и разли­чимы. Используя эти изотопы, можно проследить ход реак­ции. Еще лучше для этого радиоактивный изотоп С 14; с его помощью можно весьма точно проследить за малыми порциями вещества.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




1. Современная наука о природе, законы механики отзывы


Отзывы читателей о книге 1. Современная наука о природе, законы механики, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x