Ричард Фейнман - 1. Современная наука о природе, законы механики

Тут можно читать онлайн Ричард Фейнман - 1. Современная наука о природе, законы механики - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая старинная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Ричард Фейнман - 1. Современная наука о природе, законы механики краткое содержание

1. Современная наука о природе, законы механики - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

1. Современная наука о природе, законы механики - читать онлайн бесплатно полную версию (весь текст целиком)

1. Современная наука о природе, законы механики - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Выведем еще две полезные формулы, которые получаются интегрированием. Если тело из состояния покоя движется с постоянным ускорением g, то его скорость v в любой момент времени t будет равна

v=gt,

а расстояние, пройденное им к этому моменту времени,

s= 1 / 2 gt 2 .

Заметим еще, что поскольку скорость — это ds/dt, а ускоре­ние — производная скорости по времени, то можно написать

Так что теперь мы знаем как записывается вторая производная Существует - фото 91

Так что теперь мы знаем, как записывается вторая произ­водная.

Существует, конечно, и обратная связь между ускорением и расстоянием, которая просто следует из того, что a=dv/dt. Поскольку расстояние является интегралом от скорости, то оно может быть найдено двойным интегрированием ускорения.

Все предыдущее рассмотрение было посвящено движению в одном измерении, а теперь мы коротко остановимся на движе­нии в пространстве трех измерений. Рассмотрим движение частицы Р в трехмерном пространстве. Эта глава началась с об­суждения одномерного движения легковой машины, а именно с вопроса, на каком расстоянии от начала движения находится машина в различные моменты времени. Затем мы обсуждали связь между скоростью и изменением расстояния со временем и связь между ускорением и изменением скорости. Давайте в той же последовательности разберем движение в трех измерениях. Проще, однако, начать с более наглядного двумерного случая, а уж потом обобщить его на случай трех измерений. Нарисуем две пересекающиеся под прямым углом линии (оси координат) и будем задавать положение частицы в любой момент времени расстояниями от нее до каждой из осей. Таким образом, положе­ние частицы задается двумя числами (координатами) х и у, каж­дое из которых является соответственно расстоянием до оси у и до оси х (фиг. 8.3). Теперь мы можем описать движение, составляя, например, таблицу, в которой эти две коорди­наты заданы как функции времени. (Обобщение на трех­мерный случай требует введения еще одной оси, перпендикулярной двум первым, и измерения еще одной координаты г. Однако теперь расстояния берутся не до осей, а до координат­ных плоскостей.) Как определить скорость частицы? Для этого мы сначала найдем составляющие скорости по каждому направ­лению, или ее компоненты. Горизонтальная составляющая ско­рости, или x-компонента, будет равна производной по времени от координаты х, т. е.

v x=dx/dt (8.11)

а вертикальная составляющая, или y-компонента, равна

v y=dy/dt (8.12)

В случае трех измерений необходимо еще добавить

v z=dz/dt. (8.13)

Как, зная компоненты скорости, определить полную ско­рость в направлении движения? Рассмотрим в двумерном случае два последовательных положения частицы, разделенных корот­ким интервалом времени Dt = t 2-t 1и расстоянием Ds. Из фиг. 8.3 видно, что

Значок соответствует выражению приблизительно равно Фиг 83 - фото 92

(Значок » соответствует выражению «приблизительно равно».)

Фиг 83 Описание движения тела на плоскости и вычисление его скорости - фото 93

Фиг. 8.3. Описание движения тела на плоскости и вычисление его скорости.

Средняя скорость в течение интервала Dt получается простым делением: Ds/Dt. Чтобы найти точную скорость в момент t, нужно, как это уже делалось в начале главы, устремить Dt к нулю. В результате оказывается, что

В трехмерном случае точно таким же способом можно получить Ускорения мы - фото 94

В трехмерном случае точно таким же способом можно полу­чить

Ускорения мы определяем таким же образом как и скорости xкомпонента - фото 95

Ускорения мы определяем таким же образом, как и скорости: x-компонента ускорения а х определяется как производная от x-компоненты скорости v x (т. е. a x =d 2 x/dt 2 вторая производ­ная по времени) и т. д.

Давайте рассмотрим еще один интересный пример смешан­ного движения на плоскости. Пусть шарик движется в горизон­тальном направлении с постоянной скоростью u и в то же время падает вертикально вниз с постоянным ускорением g. Что это за движение? Так как v x =dxldt=u и, следовательно, скорость v x постоянна, то

x=ut, (8.17)

а поскольку ускорение движения вниз постоянно и равно - g, то координата у падающего шара дается формулой

y= - 1 / 2 gt 2 . (8.18)

Какую же кривую описывает наш шарик, т. е. какая связь между координатами x и y? Из уравнения (8.18), согласно (8.17), можно исключить время, поскольку t=x/u, после чего находим

y=-(g/2u 2)x 2(8.19)

Эту связь между координатами х и у можно рассматривать как уравнение траектории движения шарика. Если изобразить ее графически, то получим кривую, которая называется параболой (фиг. 8.4).

Фиг 84 Парабола которую описывает падающее тело брошенное с - фото 96

Фиг. 8.4. Парабола, которую описывает падающее тело, бро­шенное с горизонтальной началь­ной скоростью.

Так что любое свободно падающее тело, будучи бро­шенным в некотором направлении, движется по параболе.

Глава 9

ДИНАМИЧЕСКИЕ ЗАКОНЫ НЬЮТОНА

§ 1. Импульс и сила

§ 2. Компоненты ско­рости, ускорения и силы

§ 3. Что такое сила?

§ 4. Смысл динами­ческих уравне­ний

§ 5. Численное реше­ние уравнении

§ 6. Движение планет

§ 1. Импульс и сила

Открытие законов динамики или законов движения стало одним из наиболее драмати­ческих моментов в истории науки. До Ньютона движение различных тел, например планет, представлялось загадкой для ученых, но после открытия Ньютона все вдруг сразу стало по­нятно. Смогли быть вычислены даже очень слабые отклонения от законов Кеплера, обус­ловленные влиянием других планет. Движение маятника, колебания груза, подвешенного на пружине, и другие непонятные до того явления раскрыли свои загадки благодаря законам Ньютона. То же самое можно сказать и об этой главе. До нее вы не могли рассчитать, как движется грузик, прикрепленный к пружине, не говоря уже о том, чтобы определить влияние Юпитера и Сатурна на движение Урана. Но после этой главы вам будет доступно и то и дру­гое!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




1. Современная наука о природе, законы механики отзывы


Отзывы читателей о книге 1. Современная наука о природе, законы механики, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x