Педро Домингос - Верховный алгоритм
- Название:Верховный алгоритм
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2015
- ISBN:9785001001720
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Педро Домингос - Верховный алгоритм краткое содержание
Верховный алгоритм - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Может быть, секс не преуспел в машинном обучении, но в утешение можно сказать, что он все же сыграл видную роль в эволюции технологий. Порнография стала непризнанным «приложением-приманкой» Глобальной сети, не говоря уже о печатной прессе, фотографии и видео. Вибратор был первым ручным электрическим устройством, на столетие опередившим мобильные телефоны. Мотороллеры получили распространение в послевоенной Европе, особенно в Италии, потому что на них молодые пары могли скрыться от своих семей. Одной из «приманок» огня, который миллион лет назад открыл Homo erectus, было, несомненно, то, что с его помощью легче стало назначать свидания. Несомненно и то, что индустрия секс-ботов станет мотором, толкающим человекоподобных роботов ко все большей реалистичности. Просто секс, по-видимому, не средство, а цель технологической эволюции.
Воспитание природы
У эволюционистов и коннекционистов есть одно важное сходство: и те и другие разрабатывают обучающиеся алгоритмы, вдохновленные природой. Однако потом их пути расходятся. Эволюционисты сосредоточены на получении структур: для них тонкая настройка результата путем оптимизации параметров имеет второстепенное значение. Коннекционисты же предпочитают брать простые, вручную написанные структуры со множеством соединений и предоставлять весовому обучению делать всю работу. Это все тот же извечный вопрос о приоритете природы и воспитания, на этот раз в машинном обучении, и у обоих оппонентов имеются веские аргументы.
С одной стороны, эволюция породила много удивительных вещей, самая чудесная из которых — вы сами. С кроссинговером или без него, получение структур путем эволюции — существенный элемент Верховного алгоритма. Мозг может узнать все, но он не может получить еще один мозг. Если как следует разобраться в его архитектуре, можно просто воплотить его в «железе», но пока мы очень далеки от этого, поэтому однозначно надо обратиться за поддержкой к компьютерной симуляции эволюции. Более того, путем эволюции мы хотим получать мозг для роботов, системы с произвольными сенсорами и искусственный сверхинтеллект: нет причин держаться за устройство человеческого мозга, если для этих целей что-то подойдет лучше. С другой стороны, эволюция работает ужасно медленно. Вся жизнь организма дает всего лишь один фрагмент информации о его геноме: приспособленность, выраженную в числе потомков. Это колоссальная расточительность, которую нейронное обучение избегает путем получения информации в месте использования (если можно так выразиться). Как любят подчеркивать коннекционисты, например Джефф Хинтон, нет смысла носить в геноме информацию, если мы легко можем получить ее из органов чувств. Когда новорожденный открывает глаза, в его мозг начинает потоком литься видимый мир, и нужно просто все организовать, а в геноме должна быть задана архитектура машины, которая займется этой организацией.
Как и в дебатах по поводу наследственности и воспитания, ни у одной стороны нет полного ответа, и нужно понять, как соединить оба фактора. Верховный алгоритм — это не генетическое программирование и не обратное распространение ошибки, однако он должен включать основные элементы обоих подходов: обучение структурам и весам. С традиционной точки зрения первую часть дает природа, которая создает мозг в ходе эволюции, а затем за дело берется воспитание, заполняя мозг информацией. Это можно легко воспроизвести в алгоритмах машинного обучения. Сначала происходит обучение структуре сети с использованием (например) восхождения на выпуклые поверхности для определения, какие нейроны соединены друг с другом: надо попробовать добавить в сеть все возможные новые соединения, сохранить те, которые больше всего улучшают ее результативность, и повторить процедуру. Затем нужно узнать вес соединений методом обратного распространения ошибки — и новенький мозг готов к использованию.
Однако в этом месте и в естественной, и в искусственной эволюции появляется важная тонкость: вес надо узнать для всех рассматриваемых структур-кандидатов, а не только для последней, чтобы посмотреть, как хорошо она будет справляться с борьбой за выживание (в природе) или с обучающими данными (в искусственной системе). На каждом этапе нам будут нужны структуры, которые работают лучше всех не до, а после нахождения весов. Поэтому в реальности природа не предшествует воспитанию: они скорее перемежаются, и каждый раунд обучения «воспитанием» готовит сцену для следующего раунда обучения «природой», и наоборот. Природа эволюционирует ради воспитания, которое получает. Эволюционный рост ассоциативных зон коры головного мозга основан на нейронном обучении в сенсорных зонах — без этого он был бы бесполезным. Гусята постоянно ходят за своей мамой (поведение, сформировавшееся в ходе эволюции), но для этого они должны ее узнавать (выученная способность). Если вместо гусыни вылупившиеся птенцы увидят человека, они будут следовать за ним: это замечательно показал Конрад Лоренц83. В мозге новорожденного свойства среды уже закодированы, но косвенно: эволюция оптимизирует мозг для извлечения этих свойств из ожидаемых вводных. Аналогично для алгоритма, который итерационно учится новым структурам и весам, каждая новая структура неявно — функция весов, которые он получил в предыдущих раундах.
Из всех возможных геномов лишь немногие соответствуют жизнеспособным организмам, поэтому типичный ландшафт приспособленности представляет собой обширные равнины с периодическими резкими пиками, что очень затрудняет эволюцию. Если начать в Канзасе путь с завязанными глазами, не имея представления, в какой стороне Скалистые горы, можно очень долго блуждать в поисках предгорий и только потом начать восхождение. Однако если соединить эволюцию с нейронным обучением, результат будет очень интересный. Если вы стоите на плоской поверхности, но горы не слишком далеко, нейронное обучение может вас туда привести, причем чем ближе вы к горам, тем с большей вероятностью до них доберетесь. Это как способность видеть горизонт: в степях Уичито такая способность вам не пригодится, зато в Денвере вы увидите вдали Скалистые горы и направитесь к ним. Денвер, таким образом, станет намного более подходящим местом, чем Канзас, где у вас на глазах была повязка. Суммарный эффект — расширение пиков приспособленности и возможность найти путь к ним из мест, которые раньше были проблемными, например точки A на графике ниже:
В биологии это называется эффектом Болдуина, в честь Джеймса Марка Болдуина84, предложившего его в 1896 году. В эволюции, по Болдуину, выученное поведение впоследствии становится генетически обусловленным: если похожие на собак млекопитающие способны научиться плавать, у них больше шансов эволюционировать в морских котиков (как это и произошло), чем у животных, которые плавать не умеют. Таким образом, индивидуальное обучение может повлиять на эволюцию и без ламаркистских теорий. Джефф Хинтон и Стивен Нолан продемонстрировали эффект Болдуина в машинном обучении путем применения генетических алгоритмов: они получили с помощью эволюции структуру нейронной сети и обнаружили, что ее приспособленность со временем увеличивается, только если разрешено индивидуальное обучение.
Читать дальшеИнтервал:
Закладка: