Педро Домингос - Верховный алгоритм

Тут можно читать онлайн Педро Домингос - Верховный алгоритм - бесплатно ознакомительный отрывок. Жанр: Прочая старинная литература, издательство Манн, Иванов и Фербер, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Педро Домингос - Верховный алгоритм краткое содержание

Верховный алгоритм - описание и краткое содержание, автор Педро Домингос, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Верховный алгоритм - читать онлайн бесплатно ознакомительный отрывок

Верховный алгоритм - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Педро Домингос
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Однако это еще не все. Если мы наблюдаем следствие, которое может произойти даже без данной причины, то, несомненно, имеется недостаточно доказательств наличия этой причины. Теорема Байеса учитывает это, говоря, что P(причина | следствие) уменьшается вместе с P(следствие) , априорной вероятностью следствия (то есть ее вероятностью при отсутствии какого-либо знания о причинах). Наконец, при прочих равных, чем выше априорная вероятность причины, тем выше должна быть апостериорная вероятность. Если собрать все это вместе, получится теорема Байеса, которая гласит:

P(причина | следствие) = P(причина) × P(следствие | причина) / P(следствие).

Замените слово «причина» на A , а «следствие» на B , для краткости опустите все знаки умножения, и вы получите трехметровую формулу из кафедрального собора.

Это, конечно, просто формулировка теоремы, а не ее доказательство. Но и доказательство на удивление простое. Мы можем проиллюстрировать его на примере из медицинской диагностики, одной из «приманок» байесов­ского вывода. Представьте, что вы врач и за последний месяц поставили диагноз сотне пациентов. Четырнадцать из них болели гриппом, у 20 была высокая температура, а у 11 — и то и другое. Условная вероятность температуры при гриппе, таким образом, составляет одиннадцать из четырнадцати, или 11⁄14. Обусловленность уменьшает размеры рассматриваемой нами вселенной, в данном случае от всех пациентов только до пациентов с гриппом. Во вселенной всех пациентов вероятность высокой температуры составляет 20⁄100, а во вселенной пациентов, больных гриппом, — 11⁄14. Вероятность того, что у пациента грипп и высокая температура, равна доле пациентов, больных гриппом, умноженной на долю пациентов с высокой температурой: P(грипп, температура) = P(грипп) × P(температура | грипп) = 14⁄100 × 11⁄14 = 11⁄100. Но верно и следующее: P(грипп, температура) = P(температура) × P(грипп | температура) . Таким образом, поскольку и то, и другое равно P(грипп, температура) , то P(температура) × P(грипп | температура) = P(грипп) × P(температура | грипп) . Разделите обе стороны на P(температура) , и вы получите P(грипп | температура) = P(грипп) × P(температура | грипп ) / P(температура) .

Вот и все! Это теорема Байеса, где грипп — это причина, а высокая температура — следствие.

Люди, оказывается, не очень хорошо владеют байесовским выводом, по крайней мере в устных рассуждениях. Проблема в том, что мы склонны пренебрегать априорной вероятностью причины. Если анализ показал наличие ВИЧ и этот тест дает только один процент ложных положительных результатов, стоит ли паниковать? На первый взгляд может показаться, что, увы, шанс наличия СПИДа — 99 процентов. Но давайте сохраним хладно­кровие и последовательно применим теорему Байеса: P(ВИЧ | положительный) = P(ВИЧ) × P(положительный | ВИЧ) / P(положительный) . P(ВИЧ) — это распространенность данного вируса в общей популяции, которая в США составляет 0,3 процента. P(положительный) — это вероятность, что тест даст положительный результат независимо от того, есть у человека СПИД или нет. Скажем, это 1 процент. Поэтому P(ВИЧ | положительный) = 0,003 × 0,99 / 0,01 = 0,297. Это далеко не 0,99! Причина в том, что ВИЧ в общей попу­ля­ции встречается редко. Положительный результат теста на два порядка увеличивает вероятность, что человек болен СПИДом, но она все еще меньше 1⁄2. Так что, если анализы дали положительный результат, разумнее будет сохранить спокойствие и провести еще один, более доказательный тест. Есть шанс, что все будет хорошо.

Теорема Байеса полезна, потому что обычно известна вероятность следствий при данных причинах, а узнать хотим вероятность причин при данных следствиях. Например, мы знаем процент пациентов с гриппом, у которых повышена температура, но на самом деле нам нужно определить вероятность, что пациент с температурой болен гриппом. Теорема Байеса позволяет нам перейти от одного к другому. Ее значимость, однако, этим далеко не ограничивается. Для байесовцев эта невинно выглядящая формула — настоящее F = ma машинного обучения, основа, из которой вытекает множество результатов и практических применений. Каков бы ни был Верховный алгоритм, он должен быть «всего лишь» вычислительным воплощением теоремы Байеса. Я пишу «всего лишь» в кавычках, потому что применение теоремы Байеса в компьютерах оказалось дьявольски непростой задачей для всех проблем, кроме простейших. Скоро мы увидим почему.

Теорема Байеса как основа статистики и машинного обучения страдает не только от вычислительной сложности, но и от крайней противоречивости. Вы можете удивиться: разве она не прямое следствие идеи условной вероятности, как мы видели на примере гриппа? Действительно, с формулой как таковой ни у кого проблем не возникает. Противоречие заключается в том, как именно байесовцы получают вероятности, которые в нее включены, и что эти вероятности означают. Для большинства статистиков единственный допустимый способ оценки вероятностей — вычисление частоты соответствующего события. Например, вероятность гриппа равна 0,2, потому что им болело 20 из 100 обследованных пациентов. Это «частотная» интерпретация вероятности, и она дала название господствующему учению в статистике. Но обратите внимание, что в принципе безразличия Лапласа и в примере с восходом солнца мы просто высасываем вероятность из пальца. Чем оправдано априорное предположение, что вероятность восхода солнца равна одной второй, двум третьим или еще какой-то величине? На это байесов­цы отвечают, что вероятность — это не часто­та, а субъективная степень убежденности, поэтому вам решать, какая она будет, а байесов­ский вывод просто позволяет обновлять априорные убеждения после появления новых доказательств, чтобы получать апостериорные убеждения (это назы­вается «провернуть ручку Байеса»). Поклонники теоремы Байеса верят в эту идею с почти религиозным рвением и 200 лет выдерживают нападки и возражения. С появлением на сцене достаточно мощных компьютеров и больших наборов данных байесовский вывод начал брать верх.

Все модели неверны, но некоторые полезны

Настоящие врачи не диагностируют грипп на основе высокой температуры, а учитывают целый комплекс симптомов, включая боль в горле, кашель, насморк, головную боль, озноб и так далее. Поэтому, когда нам действительно надо вычислить по теореме Байеса P(грипп | температура, кашель, больное горло, насморк, головная боль, озноб, …) , мы знаем, что эта вероятность пропорциональна P(температура, кашель, больное горло, насморк, головная боль, озноб, … | грипп) . Но здесь мы сталкиваемся с проблемой. Как оценить эту вероятность? Если каждый симптом — булева переменная (он либо есть, либо нет) и врач учитывает n симптомов, у пациента может быть 2 n комбинаций симптомов. Если у нас, скажем, 20 симптомов и база данных из 10 тысяч пациентов, мы увидим лишь малую долю из примерно миллиона возможных комбинаций. Еще хуже то, что для точной оценки вероятности конкретного сочетания симптомов нужны как минимум десятки его наблюдений, а это значит, что база данных должна включать десятки миллионов пациентов. Добавьте еще десяток симптомов, и нам понадобится больше пациентов, чем людей на Земле. Если симптомов сто и мы каким-то чудом получим такие данные, не хватит места на всех жестких дисках в мире, чтобы сохранить все эти вероятности. А если в кабинет войдет пациент с не встречавшимся ранее сочетанием симптомов, будет непонятно, как поставить ему диагноз. То есть мы столкнемся с давним врагом: комбинаторным взрывом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Педро Домингос читать все книги автора по порядку

Педро Домингос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Верховный алгоритм отзывы


Отзывы читателей о книге Верховный алгоритм, автор: Педро Домингос. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x