Карл Андерсон - Аналитическая культура
- Название:Аналитическая культура
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карл Андерсон - Аналитическая культура краткое содержание
Книга будет интересна CEO и владельцам бизнеса, менеджерам, аналитикам.
Аналитическая культура - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Вот пример того, как выглядит классификация набора данных по ирисам, представленная с помощью R — бесплатной и открытой программной среды для статистических вычислений и построения графиков, которой часто пользуются специалисты по статистике и работе с данными [27]. Американский ботаник Эдгар Андерсон собрал данные о 150 экземплярах ириса, по 50 экземпляров из трех видов, а Рональд Фишер на примере этого набора данных продемонстрировал работу созданного им метода для решения задачи классификации [28].

В этом виде можно легко получить общее представление о данных (1-й кв. = 1-й квартиль, или 25-й процентиль; 3-й кв. = 75-й процентиль). Ту же самую информацию можно представить в виде коробчатой диаграммы (рис. 2.2).

Рис. 2.2. Коробчатая диаграмма классификации набора данных по ирисам
На рис. 2.3 отражены некоторые ошибки, которые можно определить с помощью представления данных в виде простой гистограммы. В базе данных NHANES меня также интересовали данные, касающиеся артериального давления. После классификации выборки я получил максимальные значения артериального давления, которые показались мне гораздо выше нормы. Сначала я решил, что это тоже ошибка. Однако распределение показало, что эти значения хоть и находятся в хвосте распределения, но с разумной частотой. Я сверился с медицинской литературой и убедился, что значения артериального давления действительно могут быть такими высокими. Однако респондентами были люди, которые, скорее всего, не получали лечения. Как вы помните, опрос проводился среди всего населения США, а не среди пациентов медицинских учреждений, где им была бы оказана помощь, — все зависит от контекста.
Рис. 2.3. Примеры типов ошибок, которые можно выявить с помощью простой гистограммы: А — значения по умолчанию, такие как –1, 0 или 1/1/1900; B — неправильный ввод или повтор данных; C — пропущенные данные; D — значения по умолчанию, такие как 999
Два важных навыка, которые должны развивать в себе аналитики, — прогнозирование возможных результатов и способность предварительно оценивать данные [29]. Я ошибся относительно значений артериального давления, так как оценивал их с точки зрения нормы для обычных здоровых людей. Тем не менее я узнал нечто новое для себя, скорректировал свои ожидания и убедился, что данные, скорее всего, верные.
Это наглядный пример того, что изначально вы, возможно, будете ставить под сомнение все источники данных. Я всегда исхожу из базового предположения, что данные могут быть ошибочными, и моя работа в том, чтобы выяснить источник проблемы. Я не впадаю в крайности, но непременно провожу определенную работу (например, пользуюсь функциями summary(), pairs()и boxplot()в R, чтобы убедиться, что в данных нет очевидных ошибок. При работе с базами данных NHANES мы с коллегами создали гистограммы всех показателей, чтобы отследить случайные образцы, бимодальное распределение и другие резко выделяющиеся значения. Подсчет числа записей на конкретную дату может послужить еще одним простым тестом. Подобный разведочный анализ данных может быть простым, быстрым и чрезвычайно ценным.
ПРОПУЩЕННЫЕ ДАННЫЕ
Одна из наиболее существенных проблем — неполные или пропущенные данные ( рис. 2.3C). Эта ошибка может быть двух видов: пропуск данных в записи или пропуск всей записи.
Существуют статистические подходы, которые можно применить для восстановления пропущенных данных или подстановки на их место наиболее вероятных значений (мне нравятся инструмент Amelia package от R [30]и сервис подстановки Google [31]). Их успех зависит от ряда факторов, в том числе от размера выборки, количества и характера пропущенных данных, типа переменных (являются ли они однозначными, непрерывными, дискретными и так далее), а также зашумленности данных. Один из наиболее простых подходов заключается в том, чтобы заполнить пропущенные значения средним значением этой переменной. В более сложных подходах применяются вариации EM-алгоритма [32]. Рекомендуемые к прочтению книги по этой теме: Missing Data (автор — П. Эллисон) и Statistical Analysis with Missing Data (авторы — Р. Литтл и Д. Рубин) [33]. Это эффективный инструмент, но в зависимости от типа данных сделанные с его помощью прогнозы в некоторых случаях могут быть неверными.
Зачем тогда рисковать и использовать этот подход? Во многих случаях, особенно в медицине и социальных науках, сбор данных может быть очень дорогим, к тому же возможность для сбора может быть только одна. Например, если вам нужно узнать значение артериального давления пациента на третий день клинического исследования, вы не можете вернуться в этот день, чтобы еще раз его измерить. Основная проблема заключается в том парадоксе, что чем меньше размер выборки, тем более ценна каждая запись. При этом чем меньше информации, с которой приходится работать алгоритму по восстановлению данных, тем менее точным получится результат.
Какое-то из пропущенных значений в записи способно сделать бесполезной всю эту запись. Это происходит в случае отсутствия ключевой информации, то есть показателя, определяющего тему записи (например, идентификационные данные клиента или заказа) и необходимого для объединения с другими данными. Кроме того, это может иметь место в случае, когда анализ строился на пропущенных данных. Например, если вы решили проанализировать продажи по почтовому индексу, а в какой-то записи индекс отсутствует, очевидно, что вы эту запись использовать не сможете. Если вам повезло и пропущенные данные не требуются для анализа, то выборка может и не сократиться.
Как уже говорилось ранее, причины пропуска данных могут быть самыми разными. Например, при проведении опроса респондент может не понять или пропустить вопрос, человек, обрабатывающий анкеты, может не разобрать почерк, или респондент может «на полпути» отказаться от участия в опросе. Бывает, что подводят технические средства: выходит из строя сервер или датчик. Поскольку эти причины в значительной мере влияют на качество данных, важно выяснить, почему данные отсутствуют.
Предположим, сломался сервер, на котором локально хранились нужные вам данные. Это может быть примером полностью потерянных записей. При наличии выравнивателя нагрузки, работающего на 20 серверов, один из которых вышел из строя, вы потеряли 5 % информации — это неприятно, но, так как это случайная выборка, не все данные потеряны полностью. При этом, если наблюдалась какая-то закономерность, у вас могут быть проблемы. Например, если на сломавшийся сервер обычно поступала информация из конкретного географического региона, вы можете лишиться несоразмерного объема данных по этому отдельному региону, что может существенно повлиять на результаты анализа.
Читать дальшеИнтервал:
Закладка: