Карл Андерсон - Аналитическая культура
- Название:Аналитическая культура
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2017
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карл Андерсон - Аналитическая культура краткое содержание
Книга будет интересна CEO и владельцам бизнеса, менеджерам, аналитикам.
Аналитическая культура - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Ошибки могут появиться в данных по многим причинам и на любом этапе сбора информации. Давайте проследим весь жизненный цикл данных с момента их генерации и до момента анализа и посмотрим, как на каждом из этапов в данные могут закрадываться ошибки.
В данных всегда больше ошибок, чем кажется. По результатам одного из исследований [23], ежегодно американские компании терпят ущерб почти в 600 млн долл. из-за ошибочных данных или данных плохого качества (это 3,5 % ВВП!).
Во многих случаях аналитики лишены возможности контролировать сбор и первичную обработку данных. Обычно они бывают одним из последних звеньев в длинной цепочке по генерации данных, их фиксированию, передаче, обработке и объединению. Тем не менее важно понимать, какие проблемы с качеством данных могут возникнуть и как их потенциально можно разрешить.
Цель этой части книги — выделить общие проблемы с качеством данных и возможные подводные камни, показать, как избежать этих проблем и как понять, что эти проблемы присутствуют в наборе данных. Более того, чуть позже вы поймете, что это призыв ко всем специалистам, работающим с данными, по возможности активно участвовать в проверке качества данных.
Итак, начнем с самого начала — с источника данных. Почему в данные могут закрасться ошибки и как с этим бороться?
Генерация данных — самый очевидный источник возможных ошибок, которые могут появиться в результате технологического (приборы), программного (сбои) или человеческого факторов.
В случае технологического фактора приборы могут быть настроены неправильно, что может сказаться на полученных данных. Например, термометр показывает 35 °C вместо 33 °C на самом деле. Это легко исправить: прибор или датчик можно настроить по другому, «эталонному», прибору, отражающему достоверные данные.
Иногда приборы бывают ненадежными. Мне довелось работать в грантовом проекте Агентства передовых оборонных исследовательских проектов Министерства обороны США (DARPA), посвященном групповой робототехнике. В нашем распоряжении была группа простейших роботов, задача которых заключалась в совместном картографировании местности. Сложность состояла в том, что инфракрасные датчики, установленные на роботах, были очень плохого качества. Вместо того чтобы сосредоточиться на разработке децентрализованного алгоритма для нанесения здания на карту, б о льшую часть времени я потратил на работу с алгоритмическими фильтрами, пытаясь справиться с качеством информации от этих датчиков, измерявших расстояние до ближайшей стены или до других роботов. Значения сбрасывались, или показатель расстояния до ближайшей стены мог неожиданно измениться на целый метр (неточность > 50 %), притом что робот оставался неподвижным. Информации от этих датчиков просто нельзя было верить.
Когда в сборе данных принимают участие люди, ошибки в данных могут появиться по самым разным причинам. Сотрудники могут не знать, как правильно пользоваться оборудованием, они могут торопиться или быть невнимательными, они могут неправильно понять инструкции или не следовать им. Например, в двух больницах могут по-разному измерять вес пациентов: в обуви и без обуви. Для исправления ошибок такого рода требуются четкие инструкции и обучение персонала. Как с любым экспериментом, необходимо попытаться контролировать и стандартизировать как можно больше этапов процесса, чтобы данные оставались максимально достоверными, сравнимыми и удобными в использовании.
Когда данные генерируются вручную, например при измерении веса пациентов, их необходимо зафиксировать. Несмотря на обещания электронного офиса, большой объем данных сегодня по-прежнему сначала попадает на бумагу в качестве промежуточного шага до попадания в компьютер. На этом этапе может возникнуть множество ошибок.
Ошибки случаются при расшифровке документов, заполненных от руки. (Если бы вы видели мой почерк, у вас бы не осталось в этом сомнений.) Больше всего исследований в этой области проведено в сфере здравоохранения, частично потому что последствия использования неточной информации могут быть слишком серьезными, как с точки зрения здоровья пациентов, так и с точки зрения стоимости проведения ненужных медицинских тестов. Согласно результатам одного из исследований, 46 % медицинских ошибок (при базовом уровне 11 % от всех записей) обусловлено неточностью при расшифровке [24]. Уровень ошибок в базах данных некоторых клинических исследований достигал 27 % [25]. Подобные ошибки могли быть результатом того, что медицинский персонал неправильно читал или понимал написанное от руки, не слышал или не понимал информацию из-за плохого качества аудиоисточника или непривычных слов или неправильно вносил информацию в компьютер.
Например, я работал в одной из компаний в сфере здравоохранения, и основными базами данных, которые компания использовала чаще всего, были данные статистических опросов населения в рамках Национальной программы проверки здоровья и питания (NHANES). Мобильные клиники по всей стране проводили опросы населения: измеряли вес и артериальное давление, выясняли, есть ли в семье больные диабетом или раком, и так далее. Когда мы изучили информацию о человеческом росте в одной из баз данных по этому проекту, то обнаружили целый ряд людей с показателем роста пять дюймов (примерно 12,5 см)! Эти данные вносили в базу специально обученные сотрудники, которые изо дня в день проводили опросы населения. Поскольку измерение роста — относительно простая процедура, наиболее вероятной причиной ошибки кажется некорректный ввод информации. Возможно, рост респондентов на самом деле был пять футов и пять дюймов (примерно 162 см) или шесть футов и пять дюймов (примерно 192 см). К сожалению, поскольку мы не знали этого наверняка, нам пришлось отметить эти значения как неизвестные.
К счастью, показатель роста человека пять дюймов — это настолько очевидная ошибка, что нам удалось определить ее с помощью простой гистограммы, и мы точно понимали, что это ошибка. Однако так бывает не всегда. Есть разные степени очевидности ошибки. Предположим, что при расшифровке записей, сделанных от руки, сотрудник вместо «аллергия на кошек и собак» написал: «аллергия на окшек и собак». Слова «окшек» не существует. Очевидно, что это опечатка, а смысл легко поддается восстановлению по контексту. Более сложными могут оказаться случаи, когда при перестановке букв могут образоваться другие слова, имеющие смысл. Тогда заметить ошибку сложнее. Разобраться со смыслом можно с помощью контекста, но он не всегда служит гарантией. Наконец, представьте, что местами случайно переставили не буквы, а цифры, например в числе 56,789 поменяли две последние цифры: 56,798. Заметить ошибку в этом случае будет чрезвычайно сложно или даже невозможно.
Читать дальшеИнтервал:
Закладка: