Джей Форрестер - Основы кибернетики предприятия
- Название:Основы кибернетики предприятия
- Автор:
- Жанр:
- Издательство:ИЗДАТЕЛЬСТВО «ПРОГРЕСС»
- Год:1971
- Город:МОСКВА
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джей Форрестер - Основы кибернетики предприятия краткое содержание
В книге излагается метод динамического моделирования промышленных предприятий и промышленно-сбытовых систем с помощью электронно-вычислительных машин; рассмотрено применение этого метода для усовершенствования организационных форм и улучшения руководства предприятиями, а также для подготовки и обучения руководящего персонала.
Книга рассчитана на широкие круги инженеров-экономистов, работников научно-исследовательских институтов, преподавателей вузов и руководящих работников промышленности.
Основы кибернетики предприятия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
DT — интервал решения (единицы времени);
Т — постоянная времени экспоненциального выравнивания (единицы времени);
S — переменная величина, которая подвергается выравниванию (в соответствующих единицах измерения).
Схематически экспоненциальное выравнивание показано на рис. B–1. В начале вычислений, в момент времени К, известно старое значение средней величины A.J. Выравниваемая величина обозначена S.JK. Разность (S.JK — A.J ), входящая в уравнение В-1 и обозначенная х, будучи умноженной на 1/ T, дает необходимую коррекцию для каждой целой единицы времени; умножая затем эту величину на DT, мы определим коррекцию на данном интервале решения у.

Теперь мы остановимся на рассмотрении запаздываний в потоках информации, которые возникают в результате ее усреднения. Сопоставим уравнение В-1 с обычной парой уравнений, используемых для отображения экспоненциального запаздывания первого порядка.

Допустим, что S в уравнении В-1 является вводом в запаздывание, выход из которого обозначен индексом W (см. рис. B–2). Уравнения экспоненциального запаздывания первого порядка могут быть представлены в следующем виде:
,
,
где
L — уровень в запаздывании (единицы S, умноженные на время);
S — входящий поток информации (в своих единицах измерения);
W — исходящий поток из запаздывания (те же единицы, что и S );
Т — постоянная времени экспоненциального выравнивания (единицы времени).
Уравнение В-3 может быть записано для более раннего периода:
.
Подставив это значение в уравнение В-2, получим
.
Если мы теперь предположим, что L.K = (T)(A.K) , то после простых преобразований получим уравнение
,
которое идентично уравнению В-1. Следовательно, уравнение экспоненциального выравнивания и уравнение запаздывания первого порядка эквивалентны.
Экспоненциальное выравнивание первого порядка вызывает запаздывание в потоках информации той же величины и формы, что и экспоненциальное запаздывание первого порядка. Постоянная времени выравнивания эквивалентна постоянной запаздывания, которая рассматривалась в главе 8.
Запаздывание, создаваемое выравниванием, может быть представлено графически. На рис. В-3 представлено равномерное усреднение.

Действительные значения рассматриваемой переменной показаны равномерно увеличивающимися. В любой момент времени средняя величина равна значению действительной величины в середине периода усреднения; другими словами, средняя величина равна действительной с запаздыванием в 1/ 2интервала усреднения.

На рис. В-4 показано запаздывание при экспоненциальном выравнивании для случая равномерно возрастающей переменной. Как видно из графиков, запаздывание должно быть равным постоянной времени T ; это можно легко доказать, рассмотрев подобные треугольники:
,
,
где у является изменением среднего значения величины, изображенной на рисунке, и равно правой части уравнения B–1, которое так же отражает изменение значения средней величины. Поэтому величина Т, отображающая на рисунке запаздывание в получении среднего значения по сравнению с действительным, обязательно должна быть равна по величине постоянной времени в уравнении B–1.
Постоянное запаздывание, обусловленное экспоненциальным выравниванием, как это показано на рис. В-4, имеет место только в случае линейно изменяющихся входных данных. При нелинейных потоках информации запаздывание, связанное с выравниванием, будет определяться более сложно. Можно показать, что для синусоидально изменяющихся входных данных запаздывание никогда не превышает четверти периода колебания на входе.
При выравнивании поток информации искажается как по амплитуде, так и во времени. Характер искажений зависит от величины изменений, которые вносятся во входную информацию, от используемого типа выравнивания и объема выравнивания, который определяется видом и степенью нежелательных возмущений, существующих в информации. Почти все потоки информации выравниваются либо посредством формальных математических приемов, либо под воздействием психологических суждений, либо с использованием того и другого методов выравнивания, прежде чем они лягут в основу принимаемых решений. Запаздывания и усиления, обусловленные процессом выравнивания, как мы видели в части III, существенно влияют на динамическое поведение системы.
Даже в тех случаях, когда модель проигрывается при отсутствии помех (как это изображено на большинстве рисунков в части III), процессы выравнивания должны быть отражены в модели. Выравнивание, обусловленное присутствием помех, неизбежно проявляется как фильтр, искажающий желаемую информацию. Эти искажения должны быть отражены даже при отсутствии помех, если мы хотим, чтобы система была правильно отображена в модели.
Приложение C
ШУМЫ
При работе с моделями замкнутых информационных систем необходимо четко понимать природу и происхождение шумов. Функции принятия решений, которые мы можем сформулировать, объясняют только главные факторы, влияющие на основные потоки. Многочисленные явления возникают за пределами изучаемой системы. Как отмечалось ранее в приложении В, наличие шумов, то есть случайных явлений, требует выравнивания, сглаживания данных, что в свою очередь вызывает запаздывания. Как видно из рис. 13–20 и 15-5, шумы порождают такие возмущения, к которым система чувствительна. Специальное исследование показывает, что шумы ограничивают возможность прогнозирования будущего состояния системы.
Читать дальшеИнтервал:
Закладка: